DELAY AND POWER MANAGEMENT OF VOLTAGE-SCALED REPEATER DRIVEN LONG INTERCONNECTS

R. Chandel, S. Sarkar, and R.P. Agarwal

References

  1. [1] S.M. Kang & Y. Leblebici, CMOS digital integrated circuits – analysis and design (New Delhi, India: TMH, 2003).
  2. [2] H.B. Bakoglu & J.D. Meindl, Optimal interconnection circuits for VLSI, IEEE Transactions on Electron Devices, ED-32 (5), 1985, 903–909. doi:10.1109/T-ED.1985.22046
  3. [3] H.B. Bakoglu, Circuits, interconnections and packaging for VLSI, VLSI Systems Series (Reading, MA: Addison Wesley,1990).
  4. [4] Y.I. Ismail & E.G. Friedman, Effects of inductance on the propagation delay and repeater insertion in VLSI circuits, IEEE Transactions on VLSI Systems, 8 (2), 2000, 195–206. doi:10.1109/92.831439
  5. [5] K. Banerjee & A. Mehrotra, Accurate analysis of on-chip inductance effects and implications for optimal repeater insertion and technology scaling, Proc. Symp. on VLSI Circuits Digest of Technical Papers, 2001, 18-1, 195–198.
  6. [6] ITRS 2001 to 2003. Website: http://public.itrs.net
  7. [7] C.Y. Wu & M.C. Shiau, Delay models and speed improvement techniques for RC tree interconnections among small-geometry CMOS inverters, IEEE Journal of Solid State Circuits, 25 (5), 1990, 1247–1256. doi:10.1109/4.62149
  8. [8] S. Dhar & M.A. Franklin, Optimum buffer circuits for driving long uniform lines, IEEE Journal of Solid State Circuits, 26 (1), 1991, 32–40. doi:10.1109/4.65707
  9. [9] M. Nekili, Y. Savaria, & G. Bios, A variable-size parallel regenerator for long integrated interconnections, Proc. 37th Midwest Symp. on Circuits and Systems, 1, 1994, 50–53.
  10. [10] V. Adler & E.G. Friedman, Repeater design to reduce delay and power in resistive interconnects, IEEE Transactions on Circuits and Systems. II: Analog and Digital Signal Processing, 45 (5), 1998, 607–616. doi:10.1109/82.673643
  11. [11] R. Chandel, S. Sarkar, & R.P. Agarwal, Repeater insertion in global interconnects in VLSI circuits, Microelectronics International, 22 (1), 2005, 43–50. doi:10.1108/13565360510575549
  12. [12] K. Banerjee, S.J. Souri, P. Kapur, & K.C. Saraswat, 3D ICs: A novel chip design for improving deep submicrometer interconnect performance and system-on-chip integration, Proceedings of IEEE, 89, 2001, 602–633. doi:10.1109/5.929647
  13. [13] K. Banerjee & A. Mehrotra, A power-optimal repeater insertion methodology for global interconnects in nanometer designs, IEEE Transactions on Electron Devices, 49 (11), 2002, 2001–2007. doi:10.1109/TED.2002.804706
  14. [14] V.V. Deodhar & J.A. Davis, Optimization of throughput performance for low-power VLSI interconnects, IEEE Transactions on VLSI Systems, 13 (3), 2005, 308–318. doi:10.1109/TVLSI.2004.842898
  15. [15] A.P. Chandrakasan & R.W. Brodersen, Sources of power consumption in low power digital CMOS design (Norwell, MA:Kluwer, 1995).
  16. [16] K.T. Tang & E.G. Friedman, Lumped verses distributed RC and RLC interconnect impedances, Proc. 43rd IEEE MidwestSymp. on Circuits and Systems, 2000, 136–139. doi:10.1109/MWSCAS.2000.951604
  17. [17] B. Kleveland, X. Qi, L. Madden, T. Furusawa et al., High-frequency characterization of on-chip digital interconnects, IEEE Journal of Solid State Circuits, 37 (6), 2002, 716–725. doi:10.1109/JSSC.2002.1004576
  18. [18] S.P. Sim, S. Krishnan, D.M. Petranovic, N.D. Arora et al., A unified RLC model for high speed on-chip interconnects, IEEE Transactions on Electron Devices, 50 (6), 2003, 1501–1510. doi:10.1109/TED.2003.813345
  19. [19] Y.I. Ismail, E.G. Friedman, & J.L. Neves, Exploiting the on-chip inductance in high-speed clock distribution networks, IEEE Transactions on VLSI Systems, 9 (6), 2001, 963–973. doi:10.1109/92.974910
  20. [20] S. Zaage & E. Groteliischen, Characterization of the broad-band transmission behavior of interconnections on silicon substrates, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 16 (7), 1993, 686–691. doi:10.1109/33.257866
  21. [21] J. Zheng, Y.-C. Hahm, A. Weisshaar, & V.K. Tripathi, CAD-oriented equivalent circuit modeling of on-chip interconnects for RF integrated circuits in CMOS technology, IEEE Microwave Sym. Digest, MTT-S, 1, 1999, 35–38.
  22. [22] H. Ymeri, B. Nauwelaers, & K. Maex, On the frequency-dependent line capacitance and conductance of on-chip interconnects on lossy silicon substrate, Microelectronics International, 19 (1), 2002, 11–18. doi:10.1108/13565360210417736
  23. [23] MOSIS Service for HSPICE models. Website: http://www.mosis.org
  24. [24] Berkeley Service. Website: http://www-device.eecs.berkeley.edu/~ptm
  25. [25] Y. Cao, T. Sata, M. Orshansky, D. Sylvester et al., New paradigm of predictive MOSFET and interconnect modelingfor early circuit simulation, Proc. IEEE Conf. on CustomIntegrated Circuits, 2000, 201–204.
  26. [26] N. Delorme, M. Belleville, & J. Chilo, Inductance and capacitance analytic formulas for VLSI interconnects, Electronics Letters, 32 (11), 1996, 996–997. doi:10.1049/el:19960689
  27. [27] M.A. El-Moursy & E.G. Friedman, Power characteristics of inductive interconnect, IEEE Transactions on VLSI Systems, 12 (12), 2004, 1295–1306. doi:10.1109/TVLSI.2004.834227

Important Links:

Go Back