LOW-COMPLEXITY BIT-PARALLEL MULTIPLIERS FOR A CLASS OF GF(2m ) BASED ON MODIFIED BOOTH’S ALGORITHM

C.-Y. Lee and C.W. Chiou

References

  1. [1] E.R. Berlekamp, Algebraic coding theory (New York: McGraw-Hill, 1968).
  2. [2] D.E.R. Denning, Cryptography and data security (Reading,MA: Addison-Wesley, 1983).
  3. [3] M.Y. Rhee, Cryptography and secure communications,(Singapore: McGraw-Hill, 1994).
  4. [4] A. Menezes, P. van Oorschot, & S. Vanstone, Handbookof applied cryptography (Boca Raton, FL: CRC Press, 1997).
  5. [5] W. Diffie & M. Hellman, New directions in cryptography,IEEE Transactions on Information Theory, IT-22, 1976, 644–654. doi:10.1109/TIT.1976.1055638
  6. [6] S.T.J. Fenn, M.G. Parker, M. Benaissa, & D. Tayler, Bit-serialmultiplication in GF(2m) using irreducible all-one polynomial,IEE Proceedings-Computers and Digital Techniques, 144, 1997,391–393. doi:10.1049/ip-cdt:19971586
  7. [7] C.K. Koc & B. Sunar, Low-complexity bit-parallel canonicaland normal basis multipliers for a class of finite fields, IEEETransactions on Computers, 47, March 1998, 353–356. doi:10.1109/12.660172
  8. [8] H. Wu & M.A. Hasan, Low-complexity bit-parallel multipliersfor a class of finite Fields, IEEE Transactions on Computers,47 (8), August 1998, 883–887. doi:10.1109/12.707588
  9. [9] C.Y. Lee, E.H. Lu, & J.Y. Lee, Bit-parallel systolic multipliersfor GF(2m) fields defined by all-one and equally-spaced polynomials, IEEE Transactions on Computers, 50, May 2001, 385–393. doi:10.1109/12.947002
  10. [10] C.Y. Lee, E.H. Lu, & L.F. Sun, Low-complexity bit-parallelsystolic architectures for computing AB2 + C in a class of finitefield GF(2m), IEEE Transactions on Circuits and Systems, Part II, 48, May 2001, 519–523. doi:10.1109/82.938363
  11. [11] T. Itoh & S. Tsujii, Structure of parallel multipliers for a class of fields GF(2m), Infomation Computers, 83, 1989, 21–40. doi:10.1016/0890-5401(89)90045-X
  12. [12] M.A. Hasan, M.Z. Wang, & V.K. Bhargava, Modular construction of low complexity parallel multipliers for a class of finite fields GF(2m), IEEE Transaction on Computers, 41, (8), August 1992, 962–971. doi:10.1109/12.156539
  13. [13] C.Y. Lee, E.H. Lu, & J.Y. Lee, Bit-parallel systolic modularmultipliers for a class of GF(2m), 15th IEEE Symp. Computer Arithmetic (Arith-2001), Vail, Colorado, USA, June 2001, 51–58.
  14. [14] R.B. Lee, Subword parallelism with MAX-2, IEEE-Micro, 16,1996, 51–59. doi:10.1109/40.526925
  15. [15] A. Booth, A signed binary multiplication technique, 4, 1951,236–240.
  16. [16] K.Z. Pekmestzi, Multiplexer-based array multipliers, IEEETransactions on Computers, 48 (1), January 1999, 15–23. doi:10.1109/12.743408
  17. [17] S.M. Kang & Y. Leblebici, CMOS digital integrated circuits-analysis and design (McGraw-Hill, 1999).

Important Links:

Go Back