R. Herzallah
[1] S.G. Fabri & V. Kadirkamanathan, Functional adaptive control: An intelligent systems approach, Series in Control and Communications (Berlin: Springer-Verlag, February 2001). [2] A.A. Fel’dbaum, Dual control theory I–II, Automation and Remote Control, 21, 1960, 874–880. [3] A.A. Fel’dbaum, Dual control theory III–IV, Automation and Remote Control, 22, 1961, 109–121. [4] A.A. Fel’dbaum, Optimal control systems (New York: Academic Press, 1965). [5] Y. Bar-Shalom & E. Tse, Dual effect, certainty equivalence and separation in stochastic control, IEEE Transactions on Automatic Control, 19, 1974, 494–500. [6] K.J. Åström & B. Wittenmark, Adaptive control (Reading,MA: Addison-Wesley, 1989). [7] J. Wieslander & B. Wittenmark, An approach to adaptivecontrol using real-time identification, Automatica, 7, 1971, 211–217. doi:10.1016/0005-1098(71)90064-1 [8] B. Wittenmark, Stochastic adaptive control methods: A survey, International Journal of Control, 21, 1975, 705–730. doi:10.1080/00207177508922026 [9] N.M. Filatov, U. Keuchel, & H. Ubehauen, Dual control for an unstable mechanical plant, IEEE Control Systems Magazine, 16(4), August 1996. doi:10.1109/37.526913 [10] Fu-Chuang Chen, Back-propagation neural networks for nonlinear self-tuning adaptive control, IEEE Control System Magazine, 10(3), 1990, 44–48. doi:10.1109/37.55123 [11] R.M. Sanner & J.E. Slotine, Gaussian networks for direct adaptive control, IEEE Transactions on Neural Networks, 3(6), 1992, 837–863. doi:10.1109/72.165588 [12] D.V. Prokhorov & D.C. Wunsch, Adaptive critic designs, IEEE Transactions on Neural Networks, 8(5), 1997, 997–1007. doi:10.1109/72.623201 [13] S.N. Balakrishnan & V. Biega, Adaptive-critic-based neural networks for artificial optimal control, Journal of Guidance, Control, and Dynamics, 19(4), 1996, 893–898. [14] K.S. Narendra & S. Mukhopadhyay, Adaptive control of nonlinear multivariable systems using neural networks, Neural Networks, 7(5), 1994, 737–752. doi:10.1016/0893-6080(94)90096-5 [15] M.S. Ahmed, Neural-net-based direct adaptive control for a class of nonlinear plants, IEEE Transactions on Automatic Control, 45, 2000, 119–124. doi:10.1109/9.827367 [16] R. Herzallah & D. Lowe, A Bayesian approach to modeling the conditional density of the inverse controller, Proc. 2004 IEEE Int. Conf. on Control Applications, CCA04, Taipei, Taiwan, September 2004, 788–793. [17] R. Herzallah & D. Lowe, A mixture density network approach to modelling and exploiting uncertainty in nonlinear control problems, Engineering Applications of Artificial Intelligence, 17, 2004, 145–158. doi:10.1016/j.engappai.2004.02.001 [18] K.S. Narendra & K. Parthasarathy, Identification and control of dynamical systems using neural networks, IEEE Transactions on Neural Networks, 1, 1990, 4–26. doi:10.1109/72.80202 [19] A. Gersho & R.M. Gray, Vector quantization and signal compression (Norwell, MA: Kluwer Academic Publishers, 1992). [20] R.E. Kalman, A new approach to linear filtering and prediction problems, Transactions of the ASME Journal of Basic Engineering, D82, 1960, 35–45. [21] J.L. Doob, Stochastic processes, 1953, John Wiley & Sons, New York. [22] S.G. Fabri & V. Kadirkamanathan, Dual adaptive control of nonlinear stochastic systems using neural networks, Automatica, 34(2), 1998, 245–253. doi:10.1016/S0005-1098(97)00181-7
Important Links:
Go Back