Z. Chen


  1. [1] A. Meghdari & M. Aryanpour, Dynamic modeling and analysis of the human jumping process, Journal of Intelligent and Robotic Systems, 37(1), 2003, 97–115. doi:10.1023/A:1023911408496
  2. [2] J. Christgau, The origins of the jump shot: Eight men who shook the world of basketball (Lincoln, NB: University of Nebraska Press, 1999).
  3. [3] H. Vogelsinger, Winning soccer skills and techniques, Fifth Edition (West Nyack, NY: Parker Publishing Company, Inc., 1970).
  4. [4] PBS, Public Broadcasting Services., 2006.
  5. [5] F.K. Jouffroy, J.P. Gasc, M. Decombas, & S. Oblin, Biomechanics of vertical leaping from the ground in galago alleni: A cineradiographic analysis, in R.D. Martin, A.G. Doyle, & A.C. Walker (Eds.), Prosimian biology (Liverpool: Duckworth and Co. Ltd., 1974), 817–821.
  6. [6] E. Muybridge, Muybridge’s complete human and animal locomotion (New York: Dover Publications, 1979).
  7. [7] C.L. Vaugham, B.L. Davis, & J.C. O’Connor, Dynamics of human gait (Cape Town, South Africa: Kiboho Publishers, 1999).
  8. [8] Y.F. Zheng & H. Hemami, Impact effects of biped contact with the environment, IEEE Trans. Systems, Man, and Cybernetics, SMC, 14(3), 1984, 437–443.
  9. [9] Y. Hurmuzlu, Dynamics of bipedal gait; Part I: Objective functions and the contact event of a planar five-link biped, ASME Journal of Applied Mechanics, 60(2), 1993, 331–336. doi:10.1115/1.2900797
  10. [10] F. Zonfrilli, G. Oriolo & D. Nardi, A biped locomotion strategy for the quadruped robot sony ers-210, Proc. IEEE Intl. Conf. on Robotics and Automation, Washington, DC, 2002, 2768–2774. doi:10.1109/ROBOT.2002.1013651
  11. [11] S. Miossec & Y. Aoustin, A simplified stability for a biped walk with under and over actuated phases, International Journal of Robotics Research, 24(7), 2005, 537–551. doi:10.1177/0278364905055378
  12. [12] C. Chevallereau, E.R. Westervelt, & J.W. Grizzle, Asymptotically stable running for a five-link, four-actuator, planar bipedal robot, International Journal of Robotics Research, 24(6), 2005, 431–464.
  13. [13] X.P. Mu, Dynamics and motion regulation of a five link biped robot walking in the sagittal plane, Ph.D. Thesis, The University of Manitoba, Canada, 2004.
  14. [14] V.I. Utkin & J. Shi, Integral sliding mode in systems operating under uncertainty conditions, Proc. IEEE Conf. on Decision and Control, Kobe, Japan, 1996, 4591–4596. doi:10.1109/CDC.1996.577594
  15. [15] H.K. Lum, M. Zribi, & Y.C. Soh, Planning and control of a biped robot, International Journal of Engineering Science, 37(5), 1999, 1319–1349. doi:10.1016/S0020-7225(98)00118-9
  16. [16] B. Khosravi-Sichani, Control of multi-linkage planar systems in the air and on the ground, Ph.D. Thesis, The Ohio State University, Columbus, OH, 1985.
  17. [17] M. Guihard & P. Gorce, Simulation of a dynamic vertical jump, Robotica, 19(1), 2001, 87–91. doi:10.1017/S026357470000312X
  18. [18] N.P. Linthorne, Analysis of standing vertical jumps using a force platform, American Journal of Physics, 69(11), 2001, 1198–1204. doi:10.1119/1.1397460
  19. [19] L. Jalics, Trajectory planning for terrain adaptive locomotion and rhythmic movements of a neuromuscular biped, Ph.D. Thesis, The Ohio State University, 1996.
  20. [20] M.T. Heath, Scientific computing, an introduction survey Second Edition (New York: McGraw Hill, 2002).
  21. [21] J.J. Craig, Introduction to robotics, mechanics and control, Third Edition (Upper Saddle River, NJ: Addison-Wesley, 2003).
  22. [22] T.-H. Chang & Y. Hurmuzlu, Sliding control without reaching phase and its application to biped locomotion, Journal of Dynamic Systems, Measurement and Control, 115(2), 1993, 447–455. doi:10.1115/1.2899122
  23. [23] B. Drazenovic, The invariance conditions for variable structure systems, Automatica, 5(2) 1969, 287–295. doi:10.1016/0005-1098(69)90071-5

Important Links:

Go Back