A MODULAR ALGORITHM FOR THE DYNAMICS OF MULTIPLE FLEXIBLE ROBOTS

C.S. Bonaventura, K.W. Jablokow, and K.W. Buffinton

References

  1. [1] D.B. Rathbun, M.C. Berg, & K.W. Buffinton, Piecewise-linear-gain pulse width control for precise positioning of structurally flexible systems subject to stiction and coulomb friction, Journal of Dynamic Systems, Measurement, and Control, 126, 2004, 139–143. doi:10.1115/1.1649979
  2. [2] C.S. Bonaventura & K.W. Jablokow, A modular approach to the dynamics of complex multirobot systems, IEEE Transactions on Robotics, 21 (1), 2005, 26–37. doi:10.1109/TRO.2004.833809
  3. [3] Working Model T M 2D – version 5.0 (2000) – User’s Manual, MSC Software Corporation.
  4. [4] Y.-L. Hwang, Recursive method for the dynamic analysis of open-loop flexible multibody systems, Proc. ASME Design Engineering Technical Conf., Chicago, IL, 2003, 593–602.
  5. [5] S.S. Kim & E.J. Haug, A recursive formulation for flexible multibody dynamics – Part I: Open-loop systems, Computer Methods in Applied Mechanics and Engineering, 71, 1988, 293–314. doi:10.1016/0045-7825(88)90037-0
  6. [6] T. Nagata, V.J. Modi, & H. Matsuo, Dynamics and control of flexible multibody systems – Part I: General formulation with an order N forward dynamics, Acta Astronautica, 49 (11), 2001, 581–594. doi:10.1016/S0094-5765(01)00011-X
  7. [7] S.S. Tadikonda, T.G. Mordfin, & T.G. Hu, Assumed modes method and articulated flexible multibody dynamics, Journal of Guidance, Control, and Dynamics, 18 (3), 1995, 404–410.
  8. [8] O. Wallrapp & S. Wiedemann, Comparison of results in flexible multibody dynamics using various approaches, Nonlinear Dynamics, 34 (1), 2003, 189–206. doi:10.1023/B:NODY.0000014559.74006.fb
  9. [9] D.S. Bae, J.M. Han, J.H. Choi, & S.M. Yang, A generalized recursive formulation for constrained flexible multibody dynamics, International Journal for Numerical Methods in Engineering, 50 (8), 2001, 1841–1859. doi:10.1002/nme.97
  10. [10] P. Betsch & P. Steinmann, A DAE approach to flexible multibody dynamics, Multibody System Dynamics, 8 (3), 2002, 367–391. doi:10.1023/A:1020934000786
  11. [11] C. Damaren, On the dynamics and control of flexible multibody systems with closed loops, International Journal of Robotics Research, 19 (3), 2000, 238–253. doi:10.1177/02783640022066842
  12. [12] S.S. Kim & E.J. Haug, A recursive formulation for flexible multibody dynamics – Part II: Closed-loop systems, Computer Methods in Applied Mechanics and Engineering, 74, 1989, 251–269. doi:10.1016/0045-7825(89)90051-0
  13. [13] S.S. Tadikonda & R.P. Singh, Dynamics of closed-loop systems containing flexible bodies, AIAA Guidance, Navigation, and Control Conf., 1, 1991, 1932–1938.
  14. [14] J.C. Simo & L. Vu-Quoc, On the dynamics in space of rods undergoing large motions – a geometrically exact approach, Computer Methods in Applied Mechanics and Engineering, 66, 1988, 125–161. doi:10.1016/0045-7825(88)90073-4
  15. [15] A. Cardona, M. Geradin, & D.B. Doan, Rigid and flexible joint modelling in multibody dynamic using finite elements, Computer Methods in Applied Mechanics and Engineering, 89, 1991, 395–418. doi:10.1016/0045-7825(91)90050-G
  16. [16] J. Ambrosio & J. Goncalves, Complex flexible multibody systems with application to vehicle dynamics, Multibody System Dynamics, 6 (2), 2001, 163–182. doi:10.1023/A:1017522623008
  17. [17] K.S. Anderson, An efficient formulation for the modelling of general multi-flexible-body constrained systems, International Journal of Solids and Structures, 30 (7), 1993, 921–945. doi:10.1016/0020-7683(93)90019-4
  18. [18] D.S. Bae, J.H. Han, & J.H. Choi, An implementation method for constrained flexible multibody dynamics using a virtual body and joint, Multibody System Dynamics, 4 (4), 2000, 297–315. doi:10.1023/A:1009832426396
  19. [19] O. Ma, K. Buhariwala, N. Roger, J. Maclean et al., MDSF – A generic development and simulation facility for flexible, complex robotic systems, Robotica, 15, 1997, 49–62.
  20. [20] Y.A. Khulief & A.A. Shabana, Dynamic analysis of a constrained system of rigid and flexible bodies with intermittent motion, Journal of Mechanisms, Transmissions, and Automation in Design, 108, 1986, 34–45.
  21. [21] C.W. Chang & A.A. Shabana, Spatial dynamics of deformable multibody systems with variable kinematic structure – Part 1: Dynamic model: Part 2: Velocity transformation, Journal of Mechanisms, Transmissions, and Automation in Design, 112 (2), 1990, 153–167.
  22. [22] A.A. Shabana, Flexible multibody dynamics – review of past and recent developments, Multibody System Dynamics, 1 (2), 1997, 189–222. doi:10.1023/A:1009773505418
  23. [23] O. Khatib, A unified approach for motion and force control of robot manipulators: the operational space formulation, IEEE Journal of Robotics and Automation, 3 (1), 1987, 43–53.
  24. [24] R.E. Roberson & R.F. Schwertassek, Dynamics of multibody systems (Berlin, Germany: Springer-Verlag, 1987).
  25. [25] C.S. Bonaventura, A modular approach to the dynamics of complex robot systems, Doctoral dissertation, The Pennsylvania State University, University Park, PA, 2002.
  26. [26] C.S. Bonaventura & K.W. Jablokow, An O(N) modular algorithm for the dynamic simulation of robots constrained by a single contact, IEEE Transactions on Systems, Man, and Cybernetics: Part C, 32 (4), 2002, 406–415. doi:10.1109/TSMCC.2002.806746
  27. [27] K.W. Lilly, Efficient dynamic simulation of robotic mechanisms (Norwell, MA: Kluwer Academic Publishers, 1993).
  28. [28] C.M. Oakley & R.H. Cannon, Equations of motion for an experimental planar two-link flexible manipulator, Proc. ASME Winter Annual Meeting, San Francisco, CA, 15, 1989.
  29. [29] J. Stanway, I. Sharf, & C. Damaren, Validation of a dynamics simulation for a structurally flexible manipulator, Proc. 1996 IEEE International Conf. Robotics and Automation, Minneapolis, MN, 1996, 1959–1965.
  30. [30] V. Lertpiriyasuwat, M.C. Berg, & K.W. Buffinton, Extended kalman filtering applied to a two-axis robotic arm with flexible links, The International Journal of Robotics Research, 19 (3), 2000, 254–270. doi:10.1177/02783640022066851
  31. [31] G.M. D’Eleuterio, Dynamics of an elastic multibody chain – Part C: Recursive dynamics, Dynamics and Stability of Systems, 7 (2), 1992, 61–89.
  32. [32] K.W. Jablokow & C.S. Bonaventura, Alternate forms of the operational space inertia matrix for the dynamic simulation of complex robot systems, Proc. 2003 International Conf. Systems, Man, and Cybernetics, Washington, DC, 2003.
  33. [33] C. Damaren & I. Sharf, Simulation of flexible-link manipulators with inertial and geometric nonlinearities, Journal of Dynamic Systems, Measurement, and Control, 117, 1995, 74–87. doi:10.1115/1.2798525
  34. [34] J.C. Piedbeuf, The jacobian matrix for a flexible manipulator, Journal of Robotic Systems, 12 (11), 1995, 709–726. doi:10.1002/rob.4620121102
  35. [35] F. Boyer, N. Glandais, & W. Khalil, Flexible multibody dynamics based on nonlinear Euler–Bernoulli kinematics, International Journal of Numerical Methods in Engineering, 54 (1), 2001, 27–59. doi:10.1002/nme.414
  36. [36] T.R. Kane, R.R. Ryan, & A.K. Banerjee, Dynamics of a cantilever beam attached to a moving base, Journal of Guidance, Control, and Dynamics, 10 (2), 1987, 139–151.
  37. [37] C.E. Padilla & A.H. von Flotow, Nonlinear strain-displacement relations and flexible multibody dynamics, Journal of Guidance, Control, and Dynamics, 15 (1), 1992, 128–136.
  38. [38] K.W. Buffinton, Dynamics of elastic manipulators with prismatic joints, Journal of Dynamic Systems, Measurement, and Control, 114, 1992, 41–49. doi:10.1115/1.2896506
  39. [39] S.K. Ider & F.M.L. Amirouche, Nonlinear modelling of flexible multibody system dynamics subject to variable constraints, ASME Journal of Applied Mechanics, 56, 1989, 444–450.
  40. [40] E. Barbieri & U. Ozguner, Unconstrained and constrained mode expansions for a flexible slewing link, ASME Journal of Dynamic Systems, Measurement, and Control, 110, 1988, 416–421.
  41. [41] E. Garcia & D. Inman, Modeling of the slewing control of a flexible structure, Journal of Guidance, 14 (4), 1991, 736–742.
  42. [42] C.C. de Wit et al., Theory of robot control (London, UK: Springer-Verlag, 1996).

Important Links:

Go Back