J.L. Meza, V. Santibañez, and R. Campa
[1] H. Khalil, Nonlinear systems (Upper Saddle River, NJ: Prentice Hall, 1996). [2] S. Arimoto, Fundamental problems of robot control: Part I, Innovations in the realm of robot servo-loops, Robotica, 13, 1995, 19–27. [3] S. Arimoto, State of the art and future research directions of robot control, Proc. 4th IFAC Symposium on Robot Control, Italy, 1994. [4] S. Arimoto, Control theory of non-linear mechanical systems: A passivity-based and circuit-theoretic approach (Oxford: Oxford University Press, 1996). [5] S. Arimoto, T. Naniwa, & H. Suzuki, Asymptotic stability and robustness of PID local feedback for position control of robot manipulators, Proc. Int. Conf. Automation Robotics and Computer Vision ICARCV ’90, Singapore, 1990, 382–386. [6] S. Arimoto & F. Miyazaki, Stability and robustness of PID feedback control for robot manipulators of sensory capability, in M. Brady & R.P. Paul (Eds.), Robotics researchs: First international symposium (Cambridge, MA: MIT press, 1983), 783–799. [7] J.T. Wen & S. Murphy, PID control for robot manipulators, CIRSSE Document 54 (Troy, NY: Rensselaer Polytechnic Institute, 1990). [8] Z. Qu & J. Dorsey, Robust PID control of robots, International Journal of Robotics and Automation, 6 (4), 1991, 228–235. [9] R. Kelly, A Tuning procedure for stable PID control of robot manipulators, Robotica, 13 (2), 1995, 141–148. [10] P. Rocco, Stability of PID control for industrial robot arms, IEEE Transactions on Robotics and Automation, 12 (4), 1996, 606–614. doi:10.1109/70.508444 [11] J. Alvarez, I. Cervantes & R. Kelly, PID regulation of robot manipulators: Stability and performance, Systems and Control Letters, 41, 2000, 73–83. doi:10.1016/S0167-6911(00)00038-4 [12] R. Kelly, V. Santibañez, & A. Loria, Control of robot manipulators in joint space (Berlin: Springer-Verlag, 2005). [13] R. Ortega, A. Loria, & R. Kelly, A semiglobally stable output feedback PI2D regulator for robot manipulators, IEEE Transactions on Automatic Control, 40 (8), 1995, 1432–1436. doi:10.1109/9.402235 [14] S. Arimoto, T. Naniwa, V. Parra-Vega, & L. Whitcomb, A quasi-natural potential and its role in design of hyper-stable PID servo-loop for robotic systems, Proc. CAI Pacific Symposium ’94, Hong Kong, 1994. [15] R. Gorez, Globally stable PID-like control of mechanical systems, Systems and Control Letters, 38, 1999, 61–72. doi:10.1016/S0167-6911(99)00047-X [16] R. Kelly, Global positioning of robot manipulators via PD control plus a class of nonlinear integral actions, IEEE Transactions on Automatic Control, 43 (7), 1998, 934–938. doi:10.1109/9.701091 [17] J.L. Meza & V. Santibáñez, Analysis via passivity theory of a class of nonlinear PID global regulators for robot manipulators, Proc. IASTED Int. Conf., Robotics and Applications RA’99, Santa Barbara, CA, 1999, 288–293. [18] V. Santibáñez & R. Kelly, A class of nonlinear PID global regulators for robot manipulators, Proc. IEEE Int. Conf. Robotics and Automation, Leuven, Belgium, 1998, 3601–3606. [19] M. Spong & M. Vidyasagar, Robot dynamics and control (New York: John Wiley and Sons, 1989). [20] D. Koditschek, Natural motion for robot arms, Proc. IEEE Conf. Decision and Control, Las Vegas, NV, 1984, 733–735. [21] P. Tomei, Adaptive PD controller for robot manipulators, IEEE Transactions on Robotics and Automation, 7 (4), 1991, 565–570. doi:10.1109/70.86088 [22] R. Ortega, A. Loría, P. Nicklasson, & H. Sira-Ramirez, Passivity-based control of Euler-Lagrange systems (London: Springer-Verlag, 1998). [23] R. Kelly, PD control with desired gravity compensation of robotic manipulators: A review, International Journal ofRobotics Research, 16 (5), 1997, 660–672. doi:10.1177/027836499701600505 [24] F. Reyes & R. Kelly, Experimental evaluation of identification schemes on a direct-drive robot, Robotica, 15, 1997, 563–571. doi:10.1017/S0263574797000659 [25] F. Reyes & R. Kelly, Experimental evaluation of model-based controllers on a direct-drive robot arm, Mechatronics, 11, 2001, 267–282. doi:10.1016/S0957-4158(00)00008-8
Important Links:
Go Back