MODELLING PREISACH-TYPE HYSTERESIS NONLINEARITY USING NEURAL NETWORK

C. Li∗ and Y. Tan∗∗

References

  1. [1] D. Crott, G. Shed, & S. Devasia, Creep, hysteresis, and vibration compensation for piezoactuator: atomic force microscopy application, Journal of Dynamic Systems, Measurement, and Control, 123, 2001, 35–43.
  2. [2] R.B. Gorbet, K.A. Morris, & D.W.L. Wang, Passivity-based stability and control of hysteresis in smart actuators, IEEE Transaction of Control Systems Technology, 9 (1), 2001, 5–15. doi:10.1109/87.896741
  3. [3] P. Ge & M. Jouaneh, Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators, Precision Engeering, 20, 1997, 99–111. doi:10.1016/S0141-6359(97)00014-7
  4. [4] I.D. Mayergoyz & G. Friedman, Generalized preisach model for hysteresis, IEEE Transaction on Magnetics, 24 (1), 1988, 212–217. doi:10.1109/20.43892
  5. [5] G.V. Webb & D.C. Lagoudas, Hysteresis modelling of SMA actuators for control applications, Journal of Intelligent Material Systems and Structures, 9, 1998, 432–448.
  6. [6] I.D. Mayergoz & G. Friedman, Mathematical models of hysteresis (Springer-Verlag, 1991).
  7. [7] D. Hughes & J.T. Wen, Preisach modelling of piezoceramic and shape memory alloy hysteresis, Smart Materials and Structures, 6, 1997, 287–300. doi:10.1088/0964-1726/6/3/007
  8. [8] A.A. Adly, & I.D Mayergoyz, Preisach modelling of magnetostrictive hysteresis, Journal Applied Physics, 69(8), 1991, 5777–5779. doi:10.1063/1.347873
  9. [9] K. Funahashi, On the approximate realization of continuous mappings by neural networks, Neural Networks, 2, 1989, 183– 192. doi:10.1016/0893-6080(89)90003-8
  10. [10] G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of Control Signals and Systems, 2 (4), 1989, 303–314. doi:10.1007/BF02551274
  11. [11] A.A. Adly & S.K. Abd-Hafiz, Using neural networks in the identification of Preisach-type hysteresis models, IEEE Transactions on Magnetics, 34(3), 1998, 629–635. doi:10.1109/20.668057
  12. [12] C. Serpico & C. Visone, Magnetic hysteresis modelling via feedforward neural networks, IEEE Transactions on Magnetics, 34(3), 1998, 623–628. doi:10.1109/20.668055
  13. [13] H.H. Saliah & D.A. Lowther, Modelling magnetic using artificial neural networks, IEEE Transactions on Magnetics, 34 (5), 1998, 3056–3059. doi:10.1109/20.717715
  14. [14] M. Kuczmann & A. Ivanyi, A new neural-network-based scalar hysteresis model, IEEE Transactions on Magnetics, 38 (2), 2002, 857–860. doi:10.1109/20.996221
  15. [15] H.H. Saliah & D.A. Lowther, A neural network model of magnetic hysteresis for computational magnetics, IEEE Transactions on Magnetics, 33 (5), 1997, 4146–4148. doi:10.1109/20.619691
  16. [16] R.B. Gorbert, Control of hysteretic systems with Preisach model representations (Ph.D Thesis of University of Waterloo, Ontario, Canada, 1997).
  17. [17] L. Chuntao & T. Yonghong, A neural network model for hysteresis nonlinearity, Sensor and Actuator Physical: A, 112, 49–54, 2004.
  18. [18] G. Webb, A. Kurdila, & D. Lagoudas, Adaptive hysteresis model for model reference control with actuator hysteresis, J. Guidance, Control, and Dynamics, 23(3), 2000, 459–465.

Important Links:

Go Back