A.B.H. Adamou-Mitiche,∗ L. Mitiche,∗ and M. Haddadi∗
[1] L. Dai, Singular control system, Lecture Notes in Controland Information Sciences (Heidelberg, Berlin: Springer Verlag,1989). [2] K. Perev & B. Shafai, Balanced realization and model reductionof singular systems, International Journal on Systems Sciences,25 (6), 1994, 1039–1052. doi:10.1080/00207729408929014 [3] W.Q. Liu & V. Sreeram, Model reduction of singular systems,Proc. 39th IEEE Conf. on Decision and Control, 2000, 2373–2378. [4] T. Stykel, Analysis and numerical solution of generalized Lya-punov equations, doctoral dissertation, Mathematik und Natur-wissenschaften, Universitat Berlin, 2002. [5] J.W. Demmel & B. Kagstrom, The generalized Schur decom-position of an arbitrary pencil A − λB: Robust software witherror bounds and applications. Part I: Theory and algorithms,ACM Trans. Math. Soft., 19 (2), 1993, 160–174.231 doi:10.1145/152613.152615 [6] A.B.H. Adamou-Mitiche & L. Mitiche, Comparative study ofmodel reduction schemes—application to the digital filters syn-thesis, Proc. of the IEEE Sixth Int. Symp. on Sig. Proc. and itsAppl., ISSPA, 2001, 675–678. doi:10.1109/ISSPA.2001.950236 [7] K. Glover, All optimal Hankel approximations of linear mul-tivariable systems and their L∞-errors bounds, InternationalJournal of Control, 39 (6), 1984, 1115–1193. doi:10.1080/00207178408933239 [8] D. Kreßner, V. Mehrmann, & T. Penzl, CTDSX—a collection ofbenchmark examples for state-space realizations of continuous-time dynamical systems, SLICOT Working Note 1998-9, Novem-ber 1998. [9] P. Benner, V. Mehrmann, V. Sima, S. Van Huffel, & A. Varga,SLICOT—A subroutine library in systems and control theory,Appl. Comput. Cont. Sig. Circuits, 1, 1999, 499–539.
Important Links:
Go Back