AN INFORMATION RETRIEVAL APPROACH TO PREDICTING METEOROLOGICAL DATA

A. Kidron∗ and S.T. Klein∗

References

  1. [1] T. Koskela, M. Varsta, J. Heikkonen, & K. Kaski, Time seriesprediction using recurrent SOM with local linear models, Int.J. of Knowledge-Based Intelligent Engineering Systems, 2 (1),1998, 60–68.
  2. [2] N.H. Packard, J.P. Crutchfield, J.D. Farmer, & R.S. Shaw,Geometry from a time series, Physical Review Letters, 45 (9),1980, 712–716. doi:10.1103/PhysRevLett.45.712
  3. [3] F. Takens, Detecting strange attractors in turbulence, inD.A. Rand & L.S. Young (Eds.), Dynamical systems and tur-bulence, Lecture notes in mathematics 898 (Warwick: SpringerVerlag, 1980) 366–381.
  4. [4] J.D. Farmer & J.J. Sidorowich, Predicting chaotic time-series,Physical review letters, 59 (8), 1987, 845. doi:10.1103/PhysRevLett.59.845
  5. [5] S. Singh, Multiple forecasting using local approximation, Pat-tern recognition, 34 (2), 2001, 443–455. doi:10.1016/S0031-3203(99)00214-9
  6. [6] N.M. Islam, S.Y. Liong, K.K. Phoon, & C.Y. Liaw, Forecastingof river flow data with general regression neural network,Proc. International Symposium on Integrated Water ResourcesManagement, Davis, CA, USA, 2001, 285–290.
  7. [7] T.H. Cormen, C.E. Leiserson, & R.L. Rivest, Introduction toalgorithms (Location: MIT Press, 1990).
  8. [8] D.Q. Goldin & P.C. Kanellakis, On similarity queries fortime-series data: constraint specification and implementation,Proc. of the First International Conference on Principles andPractice of Constraint Programming, Cassis, France, 1995,137–153.
  9. [9] D.R. Wilson & T. Martinez, Improved heterogeneous distancefunctions, Journal of Artificial Intelligence Research, 6, 1997,1–34.
  10. [10] S.L. Lee, S.J. Chun, D.H. Kim, J.H. Lee, & C.W. Chung,Similarity search for multidimensional data sequences, Proc.16th IEEE Conf. on Data Engineering, Location 2000, 599–608.
  11. [11] C. Faloutsos, M. Ranganathan, & Y. Manolopoulos, Fastsubsequence matching in time-series databases. Proc. of the1994 ACM SIGMOD International Conference on Managementof Data, Location 1994, 419–429.
  12. [12] R. Weber, H.J. Schek, & S. Blott, A quantitative analysisand performance study for similarity-search methods in high-dimensional spaces, Proc. of 24th International Conference onVery Large Data Bases, Location 1998, 194–205.
  13. [13] M.L. Hetland, A survey of recent methods for efficient retrievalof similar time sequences, in M. Last, A. Kandel, and H.Bunke (Eds.), Data mining in time series databases (Singapore:World Scientific, 2004) page #s.
  14. [14] C. Faloutsos, H.V. Jagadish, A.O. Mendelzon, & T.A. Milo,Signature technique for similarity-based queries, Proc. Com-pression and Complexity of Sequences ’97 (SEQUENCES ’97),Italy, 1997, page #s.
  15. [15] K.K. Phoon, M.N. Islam, C.Y. Liaw, & S.Y. Liong, A practicalinverse approach for forecasting nonlinear hydrological timeseries, Journal of Hydrologic Engineering, ASCE, 7 (2), 2002,116–128. doi:10.1061/(ASCE)1084-0699(2002)7:2(116)
  16. [16] V. Babovic & M. Keijzer, Forecasting of river discharges inthe presence of chaos and noise, in J. Marsalek (Ed.), Copingwith floods: lessons learned from recent experiences, (Location:Kluwer, 1999) page #s.
  17. [17] A.E. Mitchell, A comparison of short-term dispersion esti-mates resulting from various atmospheric stability classificationmethods, Atmospheric Environment, 16 (4), 1982, 765–773. doi:10.1016/0004-6981(82)90394-8

Important Links:

Go Back