MODELLING AND IDENTIFICATION BASED ON NOVEL GENETIC ALGORITHM FOR PEMFC STACK TEMPERATURE

W. Dong∗ and X. Hong∗

References

  1. [1] E. Hontanon, M.J. Escacdero, C. Bautista, P.L. Garcia-Ybarra et al., Optimization of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics techniques, Journal of Power Sources, 86, 2000, 363–368. doi:10.1016/S0378-7753(99)00478-4
  2. [2] D.R. Hodgson, B. May, P.L. Adcock, & D.P. Davies, New lightweight bipolar plate for polymer electrolyte membrane fuel cells, Journal of Power Sources, 96, 2001, 233–235. doi:10.1016/S0378-7753(01)00568-7
  3. [3] P.L. Hentall, J.B. Lakeman, G.O. Mepsted, & P.L. Adcock, New materials for polymer electrolyte membrane fuel cell current collectors, Journal of Power Sources, 80, 1999, 235–241. doi:10.1016/S0378-7753(98)00264-X
  4. [4] L.C. Iwan & R.F. Stengel, The application of neural networks to fuel processors for fuel cell vehicle, IEEE transactions on Vehicle AR Technology, 50 (1), 2001, 125–143. doi:10.1109/25.917898
  5. [5] H. Inaka, S. Suni, K. Nishizaki, T. Tabata et al., The development of effective heat and power use technology for residential in a PEMFC co-generation system, Journal of Power Sources, 106, 2002, 60–67. doi:10.1016/S0378-7753(01)01034-5
  6. [6] A. Rowe & Xianguo Li, Mathematical modelling of proton membrane fuel cells, Journal of Power Sources, 102, 2001, 82–96. doi:10.1016/S0378-7753(01)00798-4
  7. [7] Lixin You & Hongtan Liu, A two-phase flow and transport model for the cathode of PEM fuel cells, International Journal of Heat and Mass Transfer, 45, 2002, 2277–2287. doi:10.1016/S0017-9310(01)00322-2
  8. [8] T. Berning, D.M. Lu & N. Djilai, Three-dimensional computational analysis of transport phenomena in a PEM fuel cell, Journal of Power Sources, 106, 2002, 284–294. doi:10.1016/S0378-7753(01)01057-6
  9. [9] J.H. Lee, T.R. Lalk, & A.J. Appleby, Modelling electrochemical performance in large scale proton exchange membrane fuel cell stacks, Journal of Power Sources, 70, 1998, 258–268. doi:10.1016/S0378-7753(97)02683-9
  10. [10] R.Z. Jiang & Deryn Chu, Voltage–time behavior of a polymer electrolyte membrane fuel cell stack at constant current discharge, Journal of Power Sources, 92, 2001, 193–198. doi:10.1016/S0378-7753(00)00540-1
  11. [11] J.H. Lee, & T.R. Lalk, Modelling fuel cell stack systems, Journal of Power Sources, 73, 1998, 229–241. doi:10.1016/S0378-7753(97)02812-7
  12. [12] D.E. Goldberg, Real-coded genetic algorithm, virtual alphabets and blocking, Complex Systems, 5, 1991, 139–167.
  13. [13] N.N. Schraudolph & R.K. Belew, Dynamic parameter encoding for genetic algorithms, Machine Learning, 9, 1992, 9–21.
  14. [14] M. Yamamura, H. Sotoh, & S. Kobayashi, An analysis of crossover’s effect in genetic algorithms, Proc. 1st IEEE Conf. on Evolutionary Computation, Orlando, USA, 1994, 613–618.
  15. [15] D. Karaboga, Genetic algorithms with variable mutation rates: application to fuzzy logic controller design, Journal of systems and control Engineering, 211, 1997, 157–167.
  16. [16] M. Srinivas, Adaptive probabilities of crossover and mutation in genetic algorithm, IEEE Transactions on Systems, Man and Cybernetics, 24 (4), 1994, 656–666. doi:10.1109/21.286385
  17. [17] Wang Honggang & Zeng Jianchao, Genetic algorithm based on the metropolis criteria, Control and Decision, 13 (2), 1998, 181–184.

Important Links:

Go Back