EFFECTS OF INTERCOOLING ON THE PERFORMANCE OF AN IRREVERSIBLE REGENERATIVE MODIFIED BRAYTON CYCLE

S.K. Tyagi, J. Chen, S.C. Kaushik, and C. Wu

References

  1. [1] J. Vecchirelli, J.S. Kawall, & J.S. Wallace, Analysis of a concept for increasing the efficiency of a Brayton cycle via isothermal heat addition, International Journal of Energy Research, 21, 1997, 113–127. doi:10.1002/(SICI)1099-114X(199702)21:2<113::AID-ER219>3.0.CO;2-5
  2. [2] S. Göktun & H. Yavuz, Thermal efficiency of a regenerative Brayton cycle with isothermal heat addition, Energy Conversion and Management, 40, 1999, 1259–1266. doi:10.1016/S0196-8904(99)00014-X
  3. [3] S.C. Kaushik, S.K. Tyagi, & N. Singh, Thermodynamic evaluation of a modified steam regenerative Brayton heat engine for solar thermal power generation, Journal of Solar Energy Society of India, 9, 1999, 63–75.
  4. [4] S.K. Tyagi, Finite time thermodynamic analysis and second law evaluation of thermal energy conversion systems, Ph.D. Thesis, C.C.S. University, Meerut (June, 2000), India.
  5. [5] S.K. Tyagi, S.C. Kaushik, & B.K. Tyagi, Thermodynamic evaluation regenerative closed cycle Brayton heat engine with isothermal heat addition, Proc. National Renewable Energy Convention, IIT Bombay, India, 2000, 419–424.
  6. [6] L.B. Erbay, S. Göktun, & H. Yavuz, Optimal design of the regenerative gas turbine engine with isothermal heat addition, Applied Energy, 68, 2001, 249–269. doi:10.1016/S0306-2619(00)00055-6
  7. [7] S.C. Kaushik, S.K. Tyagi, & M.K. Singhal, Parametric study of an irreversible regenerative Brayton heat engine with isothermal heat addition, Energy Conversion and Management, 44, 2003, 2013–2025. doi:10.1016/S0196-8904(02)00221-2
  8. [8] J.P. Holman, Heat transfer (International Edition) (McGraw-Hill, 2002).
  9. [9] C.Y. Cheng & C.K. Chen, Maximum power of an endoreversible intercooled Brayton cycle, International Journal of Energy Research, 24, 2000, 485–494. doi:10.1002/(SICI)1099-114X(200005)24:6<485::AID-ER597>3.0.CO;2-8
  10. [10] W. Wang, L. Chen, F. Sun, & C. Wu, Performance analysis of an irreversible variable temperature heat reservoir closed intercooled regenerated Brayton cycle, Energy Conversion and Management, 44, 2003, 2713–2732. doi:10.1016/S0196-8904(03)00046-3
  11. [11] C. Wu & R.S. Kiang, Work and power optimization of a finite time Brayton cycle, International Journal of Ambient Energy, 11, 1990, 129–136.
  12. [12] C. Wu & R.S. Kiang, Power performance of a nonisentropic Brayton cycle, Journal of Engineering for Gas Turbines and Power, 113, 1991, 501–504.
  13. [13] O.M. Ibrahim, S.A. Klein, & J.W. Mitchell, Optimum heat power cycles of specified boundary conditions, Journal of Engineering for Gas Turbines and Power, 113, 1991, 514–521.
  14. [14] C.Y. Cheng & C.K. Chen, Power optimization of an endoreversible regenerative Brayton cycle, Energy, 21, 1996, 241–247. doi:10.1016/0360-5442(95)00126-3
  15. [15] L. Chen, F. Sun, C. Wu, & R.L. Kiang, Theoretical analysis of the performance of a regenerative closed cycle Brayton engine with internal irreversibilities, Energy Conversion and Management, 38, 1997, 871–877. doi:10.1016/S0196-8904(96)00090-8
  16. [16] V. Redcenco, J.V.C. Vargas, & A. Bejan, Thermodynamic optimization of a gas turbine power plant with pressure drops irreversibilities, Journal of Energy Resources Technology, 129, 1998, 233–240. doi:10.1115/1.2795041

Important Links:

Go Back