PREDICTIVE GUIDANCE INTERCEPT USING THE NEURAL EXTENDED KALMAN FILTER TRACKER

S.C. Stubberud and K.A. Kramer

References

  1. [1] P. Zarchan, Tactical and strategic missile guidance, Fourth Edition (Washington, DC: American Institute of Aeronautics and Astronautics, 2002).
  2. [2] K. Uzun, Requirements and limitations of boost-phase ballistic missile intercept systems, Masters dissertation, Naval Postgraduate School, Monterey, CA, 2004.
  3. [3] M.R. Rios, Optimizing aegis ship stationing for active theater missile defense, Masters dissertation, Naval Postgraduate School, Monterey, CA, 2004.
  4. [4] F. Bardanis, Kill vehicle effectiveness for boost phase interception of ballistic missiles, Masters Dissertation, Naval Post-graduate School, Monterey, CA, 2004.
  5. [5] S. Blackman & R. Popoli, Design and analysis of moderntracking systems (Norwood, MA: Artech House, 1999).
  6. [6] J.C. Wang & P.K. Varshney, A tracking algorithm for maneuvering targets, IEEE Trans. on Aerospace and Electronic Systems, 29 (3), 1993, 910–925. doi:10.1109/7.220939
  7. [7] R.A. Best & J.P. Norton, A new model and efficient tracker for a target with curvilinear motion, IEEE Trans. on Aerospace and Electronic Systems, 34 (2), 1997, 1030–1037.
  8. [8] Y. Bar-Shalom & X.-R. Li, Estimation and tracking: principles, techniques, and software (Norwood, MA: Artech House Inc., 1993).
  9. [9] M.W. Owen & A.R. Stubberud, A neural extended Kalmanfilter multiple model tracker, Proc. of OCEANS 2003, SanDiego, CA, 2003, 2111–2119.
  10. [10] P.S. Maybeck & R.D. Stevens, Reconfigurable flight control via multiple model adaptive control systems, Proc. 30th IEEE Conf. on Decision and Control, Brighton, UK, 1991, 3351–3356.
  11. [11] A.R. Stubberud & R.J.P. deFiguerido, Neural-network-based catastrophe avoidance control systems, Proc. 30th IEEE Conf. on Decision and Control, Brighton, UK, 1991, 2936–2938.
  12. [12] S.C. Stubberud, R.N. Lobbia, & M. Owen, An adaptiveextended Kalman filter using artificial neural networks, Proc. 34th IEEE Conf. on Decision and Control, New Orleans, LA, 1995, 1852–1856.
  13. [13] S.C. Stubberud, R.N. Lobbia, & M. Owen, An adaptive extended Kalman filter using artificial neural networks, International Journal on Smart System Design, 1, 1998, 207–221.
  14. [14] B. Kosko, Neural networks and fuzzy systems: A dynamical systems approach to machine intelligence (Englewood Cliffs, New Jersey: Prentice Hall, 1992).
  15. [15] P.K. Simpson, Artificial neural systems: Foundation,paradigms, and implementation (New York: McGraw Hill,1990).
  16. [16] S. Singhal & L. Wu, Training multilayer perceptrons with the extended Kalman algorithm, in D.S. Touretsky (Ed.), Advances in neural processing systems I (San Mateo, CA: Morgan Kaufmann, 1989), 133–140.
  17. [17] J.Z. Sasiadek & Q. Wang, Low cost automation using INS/GPS data fusion for accurate positioning, Robotica, 21, 2003, 255–260. doi:10.1017/S0263574702004757
  18. [18] L. Jetto, S. Longhi, & G. Venturini, Development and experimental validation of an adaptive extended Kalman filter for the localization of mobile robots, IEEE Trans. on Robotics and Automation, 15 (2), 1999, 219–229. doi:10.1109/70.760343
  19. [19] M.W. Owen & S.C. Stubberud, Interacting multiple model tracking using a neural extended Kalman filter, Proc. Int. Joint Conf. on Neural Networks, Vo. 4, Washington, DC, 1999, 2788–2791.
  20. [20] A.U. Levin & K.S. Narendra, Control of nonlinear dynamical systems using neural networks—part II: observability, identification, and control, IEEE Trans. on Neural Networks, 7 (1), 1996, 30–42.
  21. [21] K.S. Narendra & K. Parthasarathy, Identification and control of dynamical systems using neural networks, IEEE Trans. on Neural Networks, 1 (1) , 1991, 4–27.
  22. [22] S. Stubberud & K. Kramer, Kinematic prediction for intercept using a neural Kalman filter, Proc. IFAC World Congress, Prague, Czech Republic, 2005.
  23. [23] Y.C. Wong & M.K. Sundareshan, Data fusion and tracking of complex target maneuvers with a simplex-trained neural network-based architecture, Proc. 1998 World Congress for Computational Intelligence (IJCNN), Anchorage, AK, 1998, 1024–1029. doi:10.1109/IJCNN.1998.685912
  24. [24] G. Cybenko, Approximation by Superposition of a Sigmoidal Function, CSRD Report 856, Univ. of Illinois, Urbana, Illinois (also published in Math. Control, Signals, and System, 1989).
  25. [25] A.R. Stubberud & H.M. Wabgaonkar, Neural network techniques and applications to robust control, in C.T. Leondes (Ed.), Advances in control and dynamic systems, 53 (New York: Academic Press, 1992), 427–522.
  26. [26] A. Noureldin, R. Sharaf, A. Osman & N. El-Sheimy, INS/GPS data fusion technique utilizing radial basis functions neural networks, Proc. Position Location and Navigation Symp. (PLANS 2004), Monterey, CA, 2004, 280–284. doi:10.1109/PLANS.2004.1309006
  27. [27] K.A. Kramer & S.C. Stubberud, An adaptive Gaussian sum approach for maneuver tracking, Proc. IEEE Aerospace Conference, Big Sky, MT, 2005.
  28. [28] R.G. Brown, Introduction to random signal analysis and Kalman filtering (New York, NY: John Wiley and Sons, 1983).

Important Links:

Go Back