D. Bouchaffra and J. Tan
[1] L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Proc. of the IEEE, 77(2), Philadelphia, PA, 1989, 257–286. doi:10.1109/5.18626 [2] L. Rabiner & B.H. Juang, Fundamentals of speech recognition (Heidelberg: Prentice Hall, Signal Processing Series, Alan V. Oppenheim Series, 1993). [3] M.J.F. Gales, Cluster Adaptive Training of Hidden Markov Models, IEEE Trans. on Speech and Audio Processing, 8(4), 2000. doi:10.1109/89.848223 [4] I. Sanches, Noise-compensated hidden Markov models, IEEE Trans. on Speech and Audio Processing, 8(5), 2000. doi:10.1109/89.861372 [5] G. Fan & X.G. Xia, Improved hidden Markov models in the wavelet-domain, IEEE Trans. on Signal Processing, 49(1), 2001. [6] D. Bouchaffra, V. Govindaraju, & S.N. Srihari, Post processing of recognized strings using nonstationary Markovian models, IEEE Trans. on Pattern Analysis and Machine Intelligence, PAMI, 21(10), 1999. [7] J. Li, A. Najmi, & R.M. Gray, Image classification by a two-dimensional hidden Markov model, IEEE Trans. on Signal Processing, 48(2), 2000, 517. doi:10.1109/78.823977 [8] K. Asai, S. Hayamizu, & H. Handa, Prediction of protein secondary structures by hidden Markov models, Computer Application in the Biosciences (CABIOS), 9(2), 1993, 141–146. [9] D. Hernandez-Hernandez, S.I. Marcus, & P.J. Fard, Analysis of a risk-sensitive control problem for hidden Markov chains, IEEE Trans. on Automatic Control, 44(5), 1999, 1093. doi:10.1109/9.763237 [10] R. Duda, P. Hart, & D. Stork, Pattern classification (New York: Wiley, 2001). [11] B.D. Ripley, Pattern recognition and neural networks (New York: Cambridge University Press, 1996). [12] M.C. Gemignani, Elementary topology, Second edition (New York: Dover Publications, Inc 1990). [13] J. Cai & Z.Q. Liu, Integration of structural and statistical information for unconstrained handwritten numeral recognition, IEEE Trans. on Pattern Analysis and Machine Intelligence, PAMI, 21(3), 1999. [14] W. Zhu & J.G. Frias, Stochastic context-free grammars and hidden Markov models for modeling of bursty channels, IEEE Transactions on Vehicular Technology, 53(3), 2004. doi:10.1109/TVT.2004.825765 [15] A. Krogh, M. Brown, I.S. Mian, K. Sjolander et al., Hidden Markov models in computational biology: Applications to protein modeling, Journal Molecular Biology, 235, 1994, 1501–1531. doi:10.1006/jmbi.1994.1104 [16] S.R. Eddy, Profile hidden Markov models, Bioinformatics, 14(9) 1998, 755–763. doi:10.1093/bioinformatics/14.9.755 [17] J.A. Fodor, & Z.W. Pylyshyn, Connectionism and cognitive architecture: A critical analysis, Cognition, 28 1988, 3–71. doi:10.1016/0010-0277(88)90031-5 [18] F. Bartolucci & J. Besag, A recursive algorithm for Markov random fields, Biometrika, 89(3), 2002, 724–730. doi:10.1093/biomet/89.3.724 [19] D. Jurafsky, C. Wooters, J. Segal, A. Stolcke et al., Using a stochastic context-free grammar as a language model for speech recognition, Proc. ICASSP’95, Detroit, USA, 1995, 189–192. [20] A. Stolcke, An efficient probabilistic context-free parsing algorithm that computes prefix probabilities, Computational Linguistics, 21(2), 1995, 165–201. [21] Zhiyi Chi, Stuart Geman, Estimation of probabilistic context-free grammars, Computational Linguistics, 24(2), 1998. [22] C. Fellbaum, WordNet: An electronic lexical database, Bradford Book (Cambridge, MA: MIT Press, 1998). [23] B. Efron, In the jackknife, the bootstrap and other resampling plans (Philadelphia: SIAM, 1982). [24] H. Freeman, On the encoding of arbitrary geometric configurations, IRE Trans. on Electronic Computers, vol. EC-10, June 1961, 260–268. [25] D. Bouchaffra & J. Tan, The concept of structural hidden Markov models: Application to mining customers’ preferences for automotive designs, 17th Int. Proc. Conf. on Pattern Recognition (ICPR), Cambridge, UK, 23–26 August 2004.
Important Links:
Go Back