Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
LARGE-SCALE LOOP-CLOSING BY FUSING RANGE DATA AND AERIAL IMAGE
C. Chen and H. Wang
References
[1] K. Konolige, D. Fox, B. Limketkai, J. Ko, & B. Stewart,Map merging for distributed robot navigation, Proc. Int. Conf. Intelligent Robots and Systems, Las Vegas, USA, 2003, 212–217.
[2] M. Kass, A. Witkin, & D. Terzopoulos, Snakes: active contour models, International Journal of Computer Vision, 1(4), 1988, 321–331.
doi:10.1007/BF00133570
[3] S. Thrun, W. Burgard, & D. Fox, Probabilistic robotics (Boston: MIT Press, 2005).
[4] R. Smith, M. Self, & P. Cheeseman, Autonomous robot vehicles (New York: Springer Verlag, 1990).
[5] M. Montemerlo & S. Thrun, Simultaneous localization andmapping with unknown data association using FastSLAM,Proc. Int. Conf. Robotics and Automation, Taipei, ROC, 2003.
[6] F. Lu, Globally consistent range scan alignment for environment mapping, Autonomous Robots, 4(4), 1997, 333–349.
doi:10.1023/A:1008854305733
[7] S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani, &H. Durrant-Whyte, Simultaneous localization and mappingwith sparse extended information filters, International Journal of Robotics Research, 23(7–8), 2004, 693–716.
doi:10.1177/0278364904045479
[8] M.A. Paskin, Thin junction tree filters for simultaneous localization and mapping, Proc. Int. Joint Conf. Artificial Intelligence, Acapulco, Mexico, 2003, 1157–1164.
[9] U. Frese, A proof for the approximate sparsity of SLAM information matrices, Proc. Int. Conf. Robotics and Automation, Barcelona, Spain, 2005, 331–337.
[10] T. Duckett, S. Marsland, & J. Shapiro, Learning globally consistent maps by relaxation, Proc. Int. Conf. Robotics and Automation, San Francisco, USA, 2000, 3841–3846.
[11] U. Frese, P. Larsson, & T. Duckett, A multilevel relaxation algorithm for simultaneous localisation and mapping, IEEE Trans. Robotics, 21(2), 2005, 196–207.
doi:10.1109/TRO.2004.839220
[12] M. Bosse, P.M. Newman, J.J. Leonard, & S. Teller, SLAMin large-scale cyclic environments using the Atlas framework, International Journal of Robotics Research, 23(12), 2004, 1113–1139.
doi:10.1177/0278364904049393
[13] J.D. Tardós, J. Neira, P.M. Newman, & J.J. Leonard, Robust mapping and localization in indoor environments using sonar data, International Journal of Robotics Research, 21(4), 2002, 311–330.
doi:10.1177/027836402320556340
[14] C. Estrada, J. Neira, & J.D.Tardós, Hierarchical SLAM: real-time accurate mapping of large environments, IEEE Trans. Robotics, 21(4), 2005, 588–596.
doi:10.1109/TRO.2005.844673
[15] W. Triggs, P. McLauchlan, R. Hartley, & A. Fitzgibbon, Bundle adjustment—a modern synthesis, in W. Triggs, A. Zisserman, & R. Szeliski (Eds.), Vision algorithms: theory and practice (Berlin: Springer Verlag, 2000) 167–193.
[16] W.S. Wijesoma, K.W. Lee, & J. Ibanez Guzmán, Motion constrained simultaneous localization and mapping in neighborhood environments, Proc. Int. Conf. Robotics and Automation, Barcelona, Spain, 2005, 344–349.
[17] S.M. Oh, S. Tariq, B.N. Walker, & F. Dellaert, Map based priors for localization, Proc. Int. Conf. Intelligent Robots and Systems, Sendai, Japan, 2004, 2179–2184.
[18] C. Xu & J.L. Prince, Snakes, shapes, and gradient vector flow, IEEE Trans. Image Processing, 7(3), 1998, 359–369.
[19] A. Howard, D.F. Wolf, & G.S. Sukhatme, Towards 3D mapping in large urban environments, Proc. Int. Conf. Intelligent Robots and Systems, Las Vegas, USA, 2003, 419–424.
[20] H. Zho & R. Shibasaki, Reconstructing urban 3D model using vehicle-borne laser range scanners, Proc. 3rd Int. Conf. on 3-D Digital Imaging and Modeling, Québec City, Canada, 2001, 349–356.
doi:10.1109/IM.2001.924475
[21] M. Montemerlo & S. Thrun, Large-scale robotic 3-D mapping of urban structures, Proc. Int. Symp. on Experimental Robotics, Singapore, 2004.
Important Links:
Abstract
DOI:
10.2316/Journal.206.2007.2.206-2972
From Journal
(206) International Journal of Robotics and Automation - 2007
Go Back