ROBUST CONTROL DESIGN FOR A PLANAR PARALLEL ROBOT

K. Fu and J.K. Mills

References

  1. [1] E.F. Fichter, A Stewart platform-based manipulator: General theory and practical construction, International Journal of Robotics Research, 5(2), 1986, 157–182. doi:10.1177/027836498600500216
  2. [2] C.M. Gosselin, S. Lemieux, & J.P. Merlet, A new architecture of planar three-degree-of-freedom parallel manipulator, Proc. IEEE Int. Conf. on Robotics and Automation, Minneapolis, MN, 1996, 3738–3743. doi:10.1109/ROBOT.1996.509283
  3. [3] P. Guglielmetti & R. Longchamp, A closed-form inverse dynamics model of the Delta parallel robot, Proc. 4th IFACSymp. on Robot Control, Capri, Italy, 1994, 51–56.
  4. [4] L.W. Tsai, Robot analysis: The mechanics of serial and parallel manipulators (New York: John Wiley & Sons, 1999).
  5. [5] B. Kang, J. Chu, & J.K. Mills, Design of high speed planar parallel manipulator and multiple simultaneous specification control, Proc. IEEE Int. Conf. on Robotics and Automation, Seoul, Korea, 2001, 2723–2728.
  6. [6] R. Paul, Modeling, trajectory calculation and servoing of a computer controlled arm, Stanford University Artificial Intelligence Laboratory, AIM-77, 1972.
  7. [7] A.D. Luca, Decoupling and feedback linearization of robots with mixed rigid/elastic joints, Proc. IEEE Int. Conf. on Robotics and Automation, Minneapolis, MN, 1996, 816–821. doi:10.1109/ROBOT.1996.503874
  8. [8] J.H. Park & K.D. Kim, Biped robot walking using gravity-compensated inverted pendulum mode and computed torque control, Proc. IEEE Int. Conf. on Robotics and Automation, Leuven, Belgium, vol. 4, 1998, 3528–3533.
  9. [9] M. Honegger, R. Brega, & G. Schweitzer, Application of a nonlinear adaptive controller to a 6 DOF parallel manipulator, Proc. 2000 IEEE Int. Conf. on Robotics & Automation, San Francisco, CA, 2000, 1930–1935.
  10. [10] G.W. Lee & F.T. Cheng, Robust control of manipulators using the computed torque plus H∞ compensation method, IEEProc. Control Theory Applications, 143(1), 1996, 64–72. doi:10.1049/ip-cta:19960064
  11. [11] B. Porter & N.N. Zadeh, Genetic design of computedtorque/fuzzy-logic controllers for robotic manipulators, Proc. 1995 IEEE Int. Symp. on Intelligent Control, Monterey, CA, 1995, 165–170.
  12. [12] F.J. Lin, S.Y. Lin, & S.L. Chiu, Slider-crank mechanism control using adaptive computed torque technique, IEE Proc. of Control Theory Applications, 145(3), 1998, 364–376. doi:10.1049/ip-cta:19982051
  13. [13] D. Williamson & C.C. Wit, Performance-oriented robust control for rigid robot manipulators, Proc. 32nd Conf. on Decision and Control, San Antonio, Texas, 1993, 2143–2148. doi:10.1109/CDC.1993.325575
  14. [14] K. Nakamura & M. Ghodoussi, Dynamics computation ofclosed-link robot mechanisms with non-redundant and redundant actuators, IEEE Trans. on Robotics and Automation, 5(3), 1989, 294–302. doi:10.1109/70.34765
  15. [15] K. Fu & J.K. Mills, Convex Integrated Design (CID) method and its application to the design of a linear positioning system, IEEE Trans. on Control Systems Technology, 13(5), 2005, 701–707. doi:10.1109/TCST.2005.847328
  16. [16] K. Fu, J.K. Mills, & D. Sun, Integrated design of a linear positioning system with applications to electronic manufacturing, Proc. IEEE Int. Conf. on Robotics and Automation, New Orleans, LA, 2004, 517–522.
  17. [17] S.P. Boyd & C.H. Barratt, Linear controller design: Limits of performance (Englewood Cliffs, NJ: Prentice-Hall, 1991).
  18. [18] M.W. Spong & M. Vidyasagar, Robot dynamics and control(New York: Wiley, 1989).
  19. [19] W. Schmacher, A parallel X-Y manipulator with actuatorredundancy for high speed and active-stiffness applications, Proc. IEEE Int. Conf. on Robotics and Automation, Leuven, Belgium, 1998, 2295–2300.
  20. [20] Matlab Robust Control Toolbox User Guide, MathWorks, 2004.
  21. [21] N.A. Lehtomaki, N.R. Sandell Jr., & M. Athans, Robustness results in linear-quadratic Gaussian based multivariable control designs, IEEE Trans. on Automatic Control, AC-26 (1), 1981, 75–92. doi:10.1109/TAC.1981.1102565
  22. [22] K. Fu & J.K. Mills, Convex Integrated Design (CID): Necessary and sufficient conditions for existence of solution, Proc. IEEE Int. Conf. on Robotics, Intelligent Systems and Signal Processing, Changsha, Hunan, China, 2003, 654–660.
  23. [23] R.V. Patel, Construction of stable inverses for linear systems, International Journal of Systems Science, 13(5), 1982, 499–515. doi:10.1080/00207728208926364

Important Links:

Go Back