A CONTROL LAW FOR ROBOTIC MANIPULATORS BASED ON A FILTERED SIGNAL TO GENERATE PD ACTION AND VELOCITY ESTIMATES

F. Alonge, F. D’Ippolito, and T. Raimondi

References

  1. [1] R. Ortega & M.W. Spong, Adaptive motion control of rigid robots: A tutorial, Automatica, 25(6), 1989, 877–888. doi:10.1016/0005-1098(89)90054-X
  2. [2] L.L. Whitcomb, A.A. Rizzi, & D.E. Koditschek, Comparative experiments with a new adaptive controller for robot arms, IEEE Trans. on Robotics and Automation, 9(1), 1993, 59–70. doi:10.1109/70.210795
  3. [3] J.J.E. Slotine & W. Li, On the adaptive control of robot manipulators, Proc. ASME Winter Annual Meeting, Anaheim, CA, December, 1986, 51–56.
  4. [4] J.J.E. Slotine & W. Li, Adaptive manipulator control: Acase study, IEEE Trans. on Automatic Control, 33(11), 1988,995–1003. doi:10.1109/9.14411
  5. [5] S. Nicosia & P. Tomei, Robot control using only joint position measurements, IEEE Trans. on Automatic Control, 35(9), 1990, 1058–1061. doi:10.1109/9.58537
  6. [6] M. Erlic & W.S. Lu, A reduced-order adaptive velocity observer for manipulator control, IEEE Trans. on Automatic Control, 11(2), 1995, 293–303.
  7. [7] R.H. Brown, S.C. Schneider, & M.G. Mulligan, Analysis of algorithms for velocity estimation from discrete position versus time data, IEEE Trans. on Industrial Electronics, 39(1), 1992, 11–19. doi:10.1109/41.121906
  8. [8] P.S. Carpenter, R.H. Brown, J.A. Heinen, & S.C. Schneider, On algorithms for velocity estimation using discrete position encoders, Proc. IECON ’95, Orlando, FL, 1995, 844–849. doi:10.1109/IECON.1995.483838
  9. [9] F. Alonge, T. Raimondi, & F. D’Ippolito, Adaptive control strategies for rigid robots to reduce harmonic content of driving torque and compensate Coulomb friction, Proc. IECON ’96, Taipei, Taiwan, 1996, 202–207.
  10. [10] F. Alonge, T. Raimondi, & F. D’Ippolito, Velocity estimation by digital filtering of position data to process adaptive control laws for robotic manipulators, Proc. IECON ’96, Taipei, Taiwan, 1996, 208–213.
  11. [11] J.J.E. Slotine & W. Li, Applied nonlinear control (Englewood Cliffs, New Jersey: Prentice-Hall, 1991).
  12. [12] H. Berghuis, R. Ortega, & H. Nijmeijer, A robust adaptive robot controller, IEEE Trans. on Robotics and Automation, 9(6), 1993, 740–754. doi:10.1109/70.265918
  13. [13] N. Sadegh & R. Horowitz, An exponentially stable adaptive control law for robot manipulators, IEEE Trans. on Robotics and Automation, 6(9), 1990, 491–496. doi:10.1109/70.59360
  14. [14] K. Kaneko & R. Horowitz, An exponentially stable adaptive control law for robot manipulators, IEEE Trans. on Robotics and Automation, 13(2), 1997, 204–217. doi:10.1109/70.563643
  15. [15] F. Alonge, F. D’Ippolito, & F. M. Raimondi, An adaptive control law for robotic manipulators without velocity feedback, Control Engineering Practice, 11(9), 2003, 999–1005. doi:10.1016/S0967-0661(02)00232-0
  16. [16] F. Zhang, D.M. Dawson, M.S. de Queiroz, & W.E. Dixon,Global adaptive output feedback tracking control of roboticmanipulators, IEEE Trans. on Automatic Control, 45(6), 2000, 1203–1209. doi:10.1109/9.863607
  17. [17] P.R. Pagilla & M. Tomizuka, An adaptive output feedback controller for robot arms: Stability and experiments, Automatica, 37, 2001, 983–995. doi:10.1016/S0005-1098(01)00048-6
  18. [18] R.H. Brown, S.C. Schneider, & M.G. Mulligan, Analysis of algorithms for velocity estimation from discrete position versus time data, IEEE Trans. on Industrial Electronics, 39(1), 1992, 11–19. doi:10.1109/41.121906
  19. [19] P.S. Carpenter, R.H. Brown, J.A. Heinen, & S.C. Schneider, On algorithms for velocity estimation using discrete position encoders, Proc. IECON ’95, Orlando, FL, November 1995, 844–849. doi:10.1109/IECON.1995.483838
  20. [20] T.W. Parks & C.S. Burrus, Digital filter design (New York: John Wiley and Sons, 1987).

Important Links:

Go Back