A SELF-ADJUSTING SIMPLE HYPERSTABLE ADAPTIVE RECURSIVE ALGORITHM

O. Sezer and M. Ferdjallah

References

  1. [1] C.R. Johnson Jr. & M.G. Larimore, Comments on and additions to “An adaptive recursive LMS filter , Proc. of the IEEE, 65, 1977, 1399–1401.
  2. [2] I.D. Landau, Unbiased recursive identification using model reference adaptive techniques, IEEE Trans. on Automatic Control, 21, 1976, 194–202. doi:10.1109/TAC.1976.1101195
  3. [3] F. Perez-Gonzalez & R. Lopez-Valcarce, Misconvergence and stabilization of adaptive IIR lattice filters, Proc. 2000 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP ’00), Istanbul, Turkey, 1, 2000, 65–68.
  4. [4] M. Rupp, Normalization and convergence of gradient-based algorithms for adaptive IIR filters, Elsevier Signal Processing, 46(1), 1995, 15–30. doi:10.1016/0165-1684(95)00069-P
  5. [5] O. Sezer & M. Ferdjallah, Constrained RLS algorithm for narrow band interference rejection from EEG signals during CES, Proc. 26th Annual Int. Conf., IEEE Engineering in Medicine and Biology Society (EMBS), San Francisco, CA, 2004, 187–188.
  6. [6] D. Parikh, N. Ahmed, & S. D. Stearns, An adaptive lattice algorithm for recursive filters, IEEE Trans. on Acoustics, Speech, and Signal Processing, 28, 1980, 110–111. doi:10.1109/TASSP.1980.1163347
  7. [7] A. Nehorai, A minimal parameter adaptive notch filter with constrained poles and zeros, IEEE Trans. on Acoustics, Speech, and Signal Processing, ASSP-33(4), 1985, 983–996. doi:10.1109/TASSP.1985.1164643
  8. [8] C.R. Johnson, Jr., A convergence proof for a hyperstable adaptive recursive filter, IEEE Trans. on Information Theory, IT-25(7), 1979, 745–749.
  9. [9] C.R. Johnson, Jr., M.G. Larimore, J.R. Treichler, & B.D.O. Anderson, SHARF convergence properties, IEEE Trans. on Acoustics, Speech, and Signal Processing, ASSP-29(3), 1981, 659–670.
  10. [10] M.G. Larimore, J.R. Treichler, & C.R. Johnson, Jr., SHARF: An algorithm for adapting IIR digital filters, IEEE Trans. on Acoustics, Speech, and Signal Processing, 28(4), 1980, 428–440.
  11. [11] M. Larimore, Hyperstability and adaptive filtering, IEEE Trans. on Acoustics, Speech, and Signal Processing, 29 (2), 1981, 319–320. doi:10.1109/TASSP.1981.1163542
  12. [12] C.R. Johnson, Jr., Another use of the Lin–Narendra error model: HARF, IEEE Transactions on Automatic Control,25(5), 1980, 985–988.
  13. [13] F. Zeng & P. Zhao, A new HARF algorithm with adaptiveSPR, Int. Conf. on Circuits and Systems, 1, 1991, 141–144. doi:10.1109/CICCAS.1991.184303
  14. [14] C. Sheng-Tsai & A.C. Tan, On multidimensional HARF and SHARF algorithms, IEEE Int. Symp. on Circuits and Systems, 2, 1994, 605–608.
  15. [15] J.R. Treichler, M.G. Larimore, C.R. Johnson, Jr., & S. Wood, The application of SHARF to adaptive removal of TV ghosting, IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 6, 1981, 554–559.
  16. [16] K.X. Miao & H. Fan, Transforming SHARF etc. into Lattice, IEEE Int. Symp. on Circuits and Systems, 1, 1990, 796–800. doi:10.1109/ISCAS.1990.112199
  17. [17] S. Basu & A.C. Tan, On the convergence and hyperstability of multidimensional adaptive IIR filtering, IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing, 40 (5), 1993, 310–319. doi:10.1109/82.227371
  18. [18] E. Bertran & G. Montoro, Application of hyperstability theory to interference cancelling, Proc. of the 7th Mediterranean Electrotechnical Conf., 2, 1994, 679–682. doi:10.1109/MELCON.1994.381000
  19. [19] R. Lopez-Valcarce, C. Mosquera, & F. Perez-Gonzalez, Hyperstable adaptive IIR algorithms with polyphase structures: Analysis and design, IEEE Trans. on Signal Processing, 47(7), 1999, 2043–2046. doi:10.1109/78.771052
  20. [20] B.D.O. Anderson, A simplified viewpoint of hyperstability, IEEE Trans. on Automatic Control, 13(3), 1968, 292–294. doi:10.1109/TAC.1968.1098910
  21. [21] M. Padmanbhan, Second-order hyperstable adaptive filter for frequency estimation, IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Proceesing, 40(6), 1993, 398–403. doi:10.1109/82.277892
  22. [22] L. Ljung, On positive real transfer functions and the convergence of some recursive schemes, IEEE Trans. on Automatic Control, 22(4), 1977, 539–551. doi:10.1109/TAC.1977.1101552
  23. [23] S. Dasgupta & A.S. Bhagwat, Conditions for designing SPR transfer functions for adaptive output error identification, IEEE Trans. on Circuits Systems, CAS-34, 1987, 731–737. doi:10.1109/TCS.1987.1086198
  24. [24] C. Mosquera & F. Perez, Algebraic solution to the robust SPR problem for two polynomials, Automatica, 37, 2001, 757–762.
  25. [25] R. Lozano-Leal & S.M. Joshi, Strictly positive real transfer functions revisited, IEEE Trans. on Automatic Control, 35 (11), 1990, 1243–1245. doi:10.1109/9.59811
  26. [26] A. Betser & E. Zeheb, Modified output error identification–elimination of the SPR condition, IEEE Trans. on Automatic Control, 40(1), 1995, 190–193. doi:10.1109/9.362871
  27. [27] H.J. Marquez & P. Agathoklis, Construction of robust SPR functions, IEEE Pacific RIM Conf. on Communications, Computers, and Signal Processing, 2, 1997, 573–576.

Important Links:

Go Back