NEURAL NETWORK BASED ASSESSMENT OF SMALL-SIGNAL STABILITY

E.A. Feilat

References

  1. [1] Y.N. Yu, Electric power system dynamics (New York: Academic Press, 1983).
  2. [2] P. Kundur, Power system stability and control (New York: McGraw-Hill, 1994).
  3. [3] G. Gross, C.F. Imparato, & P.M. Look, A tool for the comprehensive analysis of power systems dynamic stability, IEEE Trans. on PAS, 101(1), 1982, 226–234. doi:10.1109/TPAS.1982.317342
  4. [4] N. Martins, Efficient eigenvalue and frequency response methods applied to power system small signal stability studies, IEEE Trans. on PWRS, 10(1), 1986, 217–226.
  5. [5] P. Kundur, G.J. Rogers, D.Y. Wong, L. Wang, & M.G. Lauby, A comprehensive computer program package for small signal stability analysis of power systems, IEEE Trans. on PWRS, 5(4), 1990, 1076–1083. doi:10.1109/59.99355
  6. [6] M. Klein, G.J. Rogers, & P. Kundur, A fundamental study of inter-area oscillations in power systems, IEEE Trans. on PWRS, 6(3), 1991, 914–921. doi:10.1109/59.119229
  7. [7] L. Rouco & I.J. Perez-Arriaga, Multi-area analysis of small signal stability in large electric power systems by SMA, IEEE Trans. on PWRS, 8(3), 1993, 1257–1265. doi:10.1109/59.260869
  8. [8] A.F.M.M. de Lima & R.T. Alden, Neural network assessment of small signal stability, Proc. Canadian Conf. on Electrical and Computer Engineering, Halifax, CA, 1994, 730–733. doi:10.1109/CCECE.1994.405855
  9. [9] S.P. Teeuwsen, A. Fisher, I. Erlich, & M.A. El-Sharkawi, Assessment of the small-signal stability of the European interconnected electric power system using neural networks, Proc. Large Engineering Systems Conf. on Power Engineering LESCOPE 2001, Halifax, CA, 2001, 158–161. doi:10.1109/LESCPE.2001.941643
  10. [10] S.P. Teeuwsen, I. Erlich, & M.A. El-Sharkawi, Neural network based classification method for small-signal stability assessment, Proc. IEEE Power Technology Conf., Bologna, Italy, 2003, 1–6.
  11. [11] S.P. Teeuwsen, I. Erlich, & M.A. El-Sharkawi, Small-signal stability assessment based on advanced neural network methods, Proc. IEEE PES Meeting, Toronto, CA, 2003, 1–8.
  12. [12] R. Segal, M.L. Kothari, & S. Madnani, Radial basis function (RBF) network adaptive power system stabilizer, IEEE Trans. on PWRS, 15(2), 2000, 722–727. doi:10.1109/59.867165
  13. [13] M. El-Sharkawi & D. Niebur, Artificial neural networks with applications to power systems (New York: IEEE Service Center, 1995).
  14. [14] T. Kailth, Linear systems (Englewood Cliffs, NJ: Prentice-Hall, 1980).
  15. [15] G.C. Verghese, I.J. Perez-Arriaga, & F.C. Schweppe, Selective modal analysis with application to electric power systems – Part I: Heuristic introduction; Part II: The dynamic stability problem, IEEE Trans. on PWRS, 101(9), 1982, 3117–3134. doi:10.1109/TPAS.1982.317524
  16. [16] Y.Y. Hsu & C.L. Chen, Identification of optimum location for stabilizer applications using participation factors, IEE Proc. Gen. Trans. & Distrib. C, 134(3), 1987, 238–244.
  17. [17] L. Faulsett, Fundamentals of neural networks—architectures, algorithms, and applications (Englewood Cliffs, NJ: Prentice-Hall, Inc., 1994).
  18. [18] S. Haykin, Neural networks a comprehensive foundation (New York: Macmillan College Publishing Company, 1994).
  19. [19] N. Sundararajan, Radial basis function neural networks with sequential learning: MRAN and its applications (Singapore: World Scientific, 1999).
  20. [20] H. Demuth & M. Beale, Neural network toolbox user’s guide for use with MATLAB (Natick, MA: The Math Works, Inc., 2002).

Important Links:

Go Back