TRACKING AND ALMOST DISTURBANCE DECOUPLING CONTROL FOR SOME CLASS OF NONLINEAR SYSTEMS WITH MISMATCH UNCERTAINTIES

T.L. Chien, C.C. Chen, and Y.J. Chen

References

  1. [1] A. Isidori, Nonlinear control system (New York: Springer Verlag, 1989).
  2. [2] H. Nijmeijer & A.J. Van Der Schaft, Nonlinear dynamical control systems (New York: Springer Verlag, 1990).
  3. [3] J.J.E. Slotine & W. Li, Applied nonlinear control (New York: Prentice-Hall, 1991).
  4. [4] S.J. Joo & J.H. Seo, Design and analysis of the nonlinear feedback linearizing control for an electromagnetic suspensionsystem, IEEE Trans. on Automatic Control, 5 (1), 1997, 135–144.
  5. [5] M.J. Corless & G. Leitmann, Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems, IEEE Trans. on Automatic Control, 26 (5), 1981, 1139–1144. doi:10.1109/TAC.1981.1102785
  6. [6] J.J. Sheen & R.H. Bishop, Adaptive nonlinear control of spacecraft, Proc. American Control Conf., Baltimore, MD, June, 1998, 2867–2871.
  7. [7] A. Alleyne, A systematic approach to the control of electrohydraulic servosystems, Proc. American Control Conf., Philadelphia, PA, June, 1998, 833–837.
  8. [8] N.S. Bedrossian, Approximate feedback linearization: The carpole example, Proc. 1992 IEEE Int. Conf. on Robotics and Automation. France, Nice, May, 1992, 1987–1992. doi:10.1109/ROBOT.1992.219989
  9. [9] S.Y. Lee, J.I. Lee, & I.J. Ha, A new approach to nonlinear autopilot design for bank-to-turn missiles, Proc. 36th Conf. on Decision and Control, San Diego, CA, December, 1997, 4192–4197.
  10. [10] S.P. Banks, Mathematical theories of nonlinear systems (Englewood Cliffs, New York: Prentice-Hall, 1988).
  11. [11] J.C. Willems, Almost invariant subspace: An approach to high gain feedback design—Part I: Almost controlled invariant subspaces, IEEE Trans. on Automatic Control, 26 (1), 1981, 235–252. doi:10.1109/TAC.1981.1102551
  12. [12] R. Marino, W. Respondek, & A.J. Van Der Schaft, Almost disturbance decoupling for single-input single-output nonlinear systems, IEEE Trans. on Automatic Control, 34 (9), 1989, 1013–1017. doi:10.1109/9.35821
  13. [13] S. Weiland & J.C. Willems, Almost disturbance decoupling with internal stability, IEEE Trans. on Automatic Control, 34 (3), 1989, 277–286. doi:10.1109/9.16417
  14. [14] R. Marino & P. Tomei, Nonlinear output feedback tracking with almost disturbance decoupling, IEEE Trans. on Automatic Control, 44 (1), 1999, 18–28. doi:10.1109/9.739062
  15. [15] C. Qian & W. Lin, Almost disturbance decoupling for a class of high-order nonlinear systems, IEEE Trans. on Automatic Control, 45 (6), 2000, 1208–1214. doi:10.1109/9.863608
  16. [16] M.A. Henson & D.E. Seborg, Critique of exact linearization strategies for process control, Journal of Process Control, 1, 1991, 122–139. doi:10.1016/0959-1524(91)85001-Y
  17. [17] V. Sinswat & F. Fallside, Eigenvalue/eigenvector assignment by state feedback, International Journal of Control, 26 (3), 1977, 389–403. doi:10.1080/00207177708922318
  18. [18] M.E. Elghezawi, A.S.I. Zinober & S.A. Billings, Analysis and design of variable structure systems using a geometric approach, International Journal of Control, 38 (3), 1983, 657–671. doi:10.1080/00207178308933100
  19. [19] H.K. Khalil, Nonlinear systems (Englewood Cliffs, NJ:Prentice-Hall, 1996).
  20. [20] K. Khorasani & P.V. Kokotovic, A corrective feedback design for nonlinear systems with fast actuators, IEEE Trans. on Automatic Control, 31, 1986, 67–69. doi:10.1109/TAC.1986.1104099
  21. [21] R. Marino & P.V. Kokotovic, A geometric approach to nonlinear singularly perturbed systems, Automatica, 24, 1988, 31–41. doi:10.1016/0005-1098(88)90005-2
  22. [22] R.K. Miller & A.N. Michel, Ordinary differential equations (New York: Academic Press, 1982).
  23. [23] AMIRA GmbH, Handbook of laboratory equipment ball andbeam system (Duisburg, Germany: AMIRA, 1999).

Important Links:

Go Back