ROBUST CONTROL OF INTERVAL PLANTS USING GENETIC ALGORITHMS

C.-C. Hsu and C.-Y. Yu

References

  1. [1] B. Barmish, New tools for robustness of linear systems (New York: Macmillan Publishing Company, 1994).
  2. [2] S.P. Bhattacharyya, H. Chapellat, & L. Keel, Robust control—the parametric approach (New Jersy: Prentice Hall, 1995).
  3. [3] D. Henrion & O. Bachelier, Low-order robust controller designfor interval plants, International Journal of Control, 74 (1),2001, 1–9. doi:10.1080/00207170150202643
  4. [4] S. Bhattacharyya & L. Keel, Robust stabilizer synthesis forinterval plants using H∞ methods, Proc. IEEE Conf. onDecision and Control, San Antonio, TX, 1993, 3003–3008. doi:10.1109/CDC.1993.325751
  5. [5] Y. Huang & Y. Wang, Robust PID tuning strategy for uncertainplants based on the Kharitonov theorem, ISA Trans., 39, 2000,419–431. doi:10.1016/S0019-0578(00)00026-4
  6. [6] C. Abdallah, P. Dorato, F. Perez, & D. Docampo, Controllersynthesis for a class of interval plants, Automatica, 31 (2),1995, 341–343. doi:10.1016/0005-1098(94)00136-7
  7. [7] B. Barmish & H. Kang, Extreme point results for robuststability of interval plants: Beyond first order compensators,Automatica, 28 (6), 1992, 1169–1180. doi:10.1016/0005-1098(92)90058-N
  8. [8] M. Dahleh, A. Tesi, & A. Vicino, An overview of extremalproperties for robust control of interval plants, Automatica,29 (3), 1993, 707–721. doi:10.1016/0005-1098(93)90065-2
  9. [9] L.R. Pujara, On computing stabilizing controllers for SISOinterval plants, Proc. Am. Control Conf., c 2001, 3896–3901.
  10. [10] M. Ho, A. Datta, & S.P. Bhattacharyya, Design of P, PI, andPID controllers for interval plants, Proc. American ControlConf., Philadelphia, PA, 1998, 2496–2501.
  11. [11] C.-C. Hsu & C.-Y. Yu, Design of optimal controller for in-terval plant from signal energy point of view via evolutionaryapproaches, IEEE Trans. on Systems, Man, and Cybernetics—Part B, 34 (3), 2004, 1609–1617. doi:10.1109/TSMCB.2004.826396
  12. [12] R. Takahashi, P. Peres, & P. Ferreira, Multiobjective H2/H-infinity guaranteed cost PID design, IEEE Control SystemsMagazine, 17 (5), 1997, 37–47. doi:10.1109/37.621468
  13. [13] S. Cheng & C. Hwang, Designing optimal PID controllers forinterval plants, Journal of the Chinese Institute of ChemicalEngineers, 30 (5), 1999, 383–395.
  14. [14] B. Zhu, H. Lee, L. Guo, & M. Tomizuka, Robust tuning offixed-structure controller for disk drives using statistical modeland multi-objective genetic algorithms, Proc. 2001 AmericanControl Conf., Arlington, VA, 2001, 2773–2778. doi:10.1109/ACC.2001.946307
  15. [15] A. Herreros, E. Baeyens, & J.R. Peran, MRCD: A geneticalgorithm for multiobjective robust control design, EngineeringApplications of Artificial Intelligence, 15 (3), 2002, 285–301. doi:10.1016/S0952-1976(02)00036-2
  16. [16] A. Herreros, E. Baeyens, & J.R. Peran, Design of PID-typecontrollers using multiobjective genetic algorithms, ISA Trans.,41 (4), 2002, 457–472. doi:10.1016/S0019-0578(07)60102-5
  17. [17] Z. Michalewicz, Genetic algorithms + data structure =evolution program (Berlin: Springer-Verlag, 1996).
  18. [18] D. Goldberg, Genetic Algorithms in Search, Optimisation, andMachine Learning (Reading, MA: Addison-Wesley, 1989).
  19. [19] R. Caponetto, L. Fortuna, S. Graziani, & M. Xibilia, Geneticalgorithms and applications in system engineering: A survey,Trans. of the Institute of Measurement and Control, 15, 1993,143–156. doi:10.1177/014233129301500305
  20. [20] K.C. Tan, T.H. Lee, E.F. Khor, & K. Ou, Control systemdesign unification and automation using an incremented multi-objective evolutionary algorithm, Proc. 19th IASTED Int.Conf. on Modeling, Identification and Control, Innsbruck,Austria, 2000, 179–185.
  21. [21] M. Mahfoul, D. Linkens, & M. Abbod, Multi-objective geneticoptimization of GPC and SOFLC tuning parameters using afuzzy-based ranking method, IEE Proc.—Control Theory andApplications, 147 (3), 2000, 344–354. doi:10.1049/ip-cta:20000345
  22. [22] C. Wang & C. Hsu, Digital redesign and performance evaluationusing energy resemblance index (ERI), IEE Proc.—ControlTheory and Applications, 145 (4), 1998, 383–392. doi:10.1049/ip-cta:19981887
  23. [23] V.L. Kharitonov, Asymptotic stability of an equilibrium po-sition of a family systems of linear differential equations,Differential Equations, 14, 1979, 1483–1485.
  24. [24] K. Astrom, Introduction to stochastic control theory (NewYork: Academic, 1970).
  25. [25] M. Hutton & B. Friedland, Routh approximations for reduc-ing order of linear, time-invariant systems, IEEE Trans. onAutomatic Control, 20, 1975, 329–337.
  26. [26] K. Deb, Multi-objective optimization using evolutionary algo-rithms (New York: Wiley, 2001).
  27. [27] F. Dong, Y. Wang, & J. Zhou, Track following control design forODDs by employing repetitive two-degree-of-freedom controlscheme, IEEE Trans. on Consumer Electronics, 49 (4), 2003,1186–1195. doi:10.1109/TCE.2003.1261215

Important Links:

Go Back