A ROBUST AND GLOBALLY CONVERGENT PCA LEARNING ALGORITHM

M. Ye, Z. Yi, and K.K. Tan

References

  1. [1] S. Firor & F. Piazaa, A general class of ϕ APEX PCA neural algorithm, IEEE Trans. on Circuits and Systems I, 47(9), 2000, 1397–1998. doi:10.1109/81.883337
  2. [2] V.J. Marko, A new simple ∞ OH neuron model as biologically plausible principal component analyzer, IEEE Trans. on Neural Networks, 14(4), 2003, 853–859. doi:10.1109/TNN.2003.813836
  3. [3] E. Oja & J. Karhunen, On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix, Journal of Mathematical Analysis Applications, 106, 1985, 69–84. doi:10.1016/0022-247X(85)90131-3
  4. [4] E. Oja, Neural networks, principal components, and subspaces, International Journal of Neural System, 1(1), 1989, 61–68. doi:10.1142/S0129065789000475
  5. [5] E. Oja, Principal components, minor components, and linear neural networks, Neural Networks, 5(6), 1992, 927–935. doi:10.1016/S0893-6080(05)80089-9
  6. [6] T.D. Sanger, Optimal unsupervised learning in a single-layer linear feedforward neural network, Neural Networks, 2(6), 1989, 459–473. doi:10.1016/0893-6080(89)90044-0
  7. [7] S. Bannour & M.R. Azimi-Sadjadi, Principal component extraction using recursive least spares learning, IEEE Trans. on Neural Networks, 6, 1995, 457–469. doi:10.1109/72.363480
  8. [8] S. Ouyang, Z. Bao, & G. Liao, Robust recursive least squares learning algorithm for principal component analysis, IEEE Trans. on Neural Networks, 11, 2000, 215–221. doi:10.1109/72.822524
  9. [9] C. Chatterjee, Z. Kung, & V.P. Roychowdhury, Algorithms for accelerated convergence of adaptive PCA, IEEE Trans. on Neural Networks, 11(3), 2000, 338–355. doi:10.1109/72.839005
  10. [10] Y. Chauvin, Principal component analysis by gradient descent on a constrained linear Hebbian cell, Proc. Joint Int. Conf. on Neural Networks, San Diego, CA, 1989, 373–380. doi:10.1109/IJCNN.1989.118611
  11. [11] Z. Fu & E.M. Dowling, Conjugate gradient eigenstructure tracking for adaptive spectral estimation, IEEE Trans. on Signal Processing, 43, 1995, 1151–1160. doi:10.1109/78.382400
  12. [12] T.K. Sarkar & X. Yang, Application of the conjugate gradient and steepest descent for computing the eigenvalues of an operator, Signal Processing, 17, 1989, 31–38. doi:10.1016/0165-1684(89)90070-4
  13. [13] X. Yang, T.K. Sarkar, & E. Arvas, A survey of conjugate gradient algorithm for solution of extreme eigen-problems of a symmetric matrix, IEEE Trans. on Acoustics, Speech, Signal Processing, 37, 1989, 1550–1556. doi:10.1109/29.35393
  14. [14] Q. Zhang & Y.W. Leung, Energy function for one-unit Oja algorithm, IEEE Trans. on Neural Networks, 6(5), 1995, 1291–1293. doi:10.1109/72.410377
  15. [15] A. Weingessels & K. Hornik, Local PCA algorithms, IEEE Trans. on Neural Network, 11, 2000, 1242–1250. doi:10.1109/72.883408
  16. [16] Q. Zhang & Y. Leung, A class of learning algorithms for principal component analysis and minor component analysis, IEEE Trans. on Neural Network, 11, 2000, 529–533. doi:10.1109/72.839022
  17. [17] Q. Zhang, On the discrete-time dynamics of a PCA learning algorithm, Neurocomputing, 55, 2003, 761–769. doi:10.1016/S0925-2312(03)00439-9
  18. [18] Y.N. Rao & J.C. Principe, Robust on-line principal component analysis based on a fixed-point approach, Proc. of ICASSP, 1, 2002, 981–984.
  19. [19] L. Xu, Least mean square error reconstruction principle for selforganizing neural nets, Neural Networks, 6, 1993, 627–648. doi:10.1016/S0893-6080(05)80107-8
  20. [20] A. Cichocki, W. Kasprzak, & W. Skarbek, Adaptive learning algorithm for principal component analysis with partial data, Proc. of Cybernetics System, 2, 1996, 1014–1019.
  21. [21] P.J. Zufiria, On the discrete time dynamics of the basic Hebbian neural network node, IEEE Trans. on Neural Networks, 13(6), 2002, 1342–1352. doi:10.1109/TNN.2002.805752
  22. [22] T. Anisse & C. Gianalvo, Against the convergence of the minor component analysis neurons, IEEE Trans. on Neural Networks, 10(1), 1999, 207–210. doi:10.1109/72.737511
  23. [23] K. Diamantaras, K. Hornik, & M.G. Strintzis, Optimal linear compression and decompression under unreliable representation and robust PCA neural models, IEEE Trans. on Neural Networks, 10(5), 1999, 1186–1195. doi:10.1109/72.788657
  24. [24] F. Luo, R. Unbehauen, & A. Cichocki, A minor component analysis algorithm, Neural Networks, 10(2), 1997, 291–297. doi:10.1016/S0893-6080(96)00063-9
  25. [25] G. Cirrincione, M. Cirrincione, J. Herault, & S.V. Huffel, The MCA EXIN neuron for the minor component analysis, IEEE Trans. on Neural Networks, 13(1), 2002, 160–187. doi:10.1109/72.977295
  26. [26] M. Ye, Robust beamforming by a globally convergent MCA neural network, Lecture Notes in Computer Science, 3497, 2005, 1034–1042.

Important Links:

Go Back