A NEW HUMAN-SCALE TELE-OPERATING SYSTEM FOR BIOMEDICAL APPLICATIONS

S. Guo and J. Wang

References

  1. [1] F. Wen & C. Liang, Displacement analysis of the 6-6 Stewart platform mechanisms, Mechanism and machine Theory, 29(4), 1994, 547–557. doi:10.1016/0094-114X(94)90094-9
  2. [2] A. Hara & K. Sugimoto, Synthesis of parallel micromanipulators, Journal of Mechanisms, Transmission, and Automation in Design, 111, 1989, 35–39.
  3. [3] I. Pappas & A. Codourey, Visual control of a microrobot operating under a microscope, Proc. 1996 IEEE/RSJ Int. Con. on Intelligent Robotics and System, 2, Osaka, Japan, 1996, 993–1000. doi:10.1109/IROS.1996.571089
  4. [4] B.Vikramaditya & B.J. Nelson, Visually guided microassembly using optical microscopes and active vision techniques, Proc. 1997 IEEE Int. Conf. on Robotics and Automation, 4, Albuquerque, New Mexico, 1997, 3172–3177. doi:10.1109/ROBOT.1997.606771
  5. [5] F. Arai, M. Ogawa, T. Fukuda, K. Horio et al., High speed random separation of microobject in microchip by laser manipulator and dielectrophoresis, Proc. IEEE 13th Annual Int. Conf. on Micro Electro Mechanical Systems (MEMS 2000), Miyazaki, Japan, 2000, 727–732. doi:10.1109/MEMSYS.2000.838608
  6. [6] G. Fedder, S. Santhanam, M.L. Reed, S. Eagle et al., Laminated high-aspect-ratio microstructures in a conventional CMOS process, Proc. IEEE Micro Electro Mechanical Systems Workshop, San Diego, CA, 1996, 13–18.
  7. [7] A. Sulzmann, J. Carlier, & J. Jacot, Virtual reality and high accurate vision feedback as key information for micro robot telemanipulation, SPIE, Proc. Microrobotics: Components and Applications, 2906, Boston, 1996, 38–57.
  8. [8] A. Kawaji, F. Arai, & T. Fukuda, Calibration for contact type micromanipulation, Proc. 1999 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS ’99), 2, Seoul, Korea, 1999, 715–720.
  9. [9] F. Arai, T. Sugiyama, P. Luangjarmekorn, A. Kawaji, et al., 3D viewpoint selection and bilateral control for bio-micromanipulation, Proc. 2000 IEEE Int. Conf. on Robotics and Automation, San Francisco, CA, 2000, 947–952.
  10. [10] K.H. Hunt & P.R. McAree, The octahedral manipulator: Geometry and mobility, International Journal of Robotics Research, 17(8), 1998, 868–885. doi:10.1177/027836499801700805
  11. [11] J.M. Selig & X. Ding, Structure of the spatial stiffness matrix, International Journal of Robotics and Automation, 17(1), 2002, 1–16.
  12. [12] M. Griffis & J. Duffy, Kinestatic control: A novel theory for simultaneously regulating force and displacement, Trans. of the ASME Journal of Mechanical Design, 113, (4), 1991, 508–515.
  13. [13] T. Arai, Analysis and synthesis of a parallel link manipulator based on its statics, Journal of the Robotics Society of Japan, 10(4), 1992, 526–533.
  14. [14] Y. Takeda, H. Funabashi, & H. Ichimaru, Development of spatial in-parallel actuated manipulators with six degrees of 86 freedom with high motion transmissibility, Japan Society of Mechanical Engineer International Journal, Series C, 40(2), 1997, 299–308.
  15. [15] V.E. Gough & S.G. Whitehall, Universal tyre test machine, Proc. FISITA 9th Int. Technical Congress, London, UK, 1962, 117–137.
  16. [16] H.R. Mohammadi Daniali, P.J. Zsombor-Murray, & J. Angeles, Singularity analysis of a general class of planar parallel manipulators, Proc. IEEE Int. Conf. on Robotics and Automation, Nagoya, Japan, 1995, 1547–1552. doi:10.1109/ROBOT.1995.526030
  17. [17] M. Khamesee, T. Nakamura, N. Kato, & S. Guo, A remote micro-manipulator for teleoperation using magnetic levitation, Proc. 1997 Int. Symp. on Micromechatronics and Human Science, Nagoya, Japan, 1997, 169–176. doi:10.1109/MHS.1997.768876
  18. [18] J. Wang & S. Guo, A human scale tele-operating system for microoperation – macro/micro complex mechanism for HSTOS, Proc. 2005 IEEE Int. Conf. on Robotics and Biomimetics (Robio 2005), Hong Kong and Macau, 2005, 681–686. doi:10.1109/ROBIO.2005.246350
  19. [19] J. Wang & S. Guo, Development of a precision parallel micromechanism for human scale tele-operating system, Proc. 2006 IEEE Int. Conf. on Mechatronics and Automation (ICMA2006), Luoyang, China, 2006, 136–141. doi:10.1109/ICMA.2006.257466
  20. [20] B. Dasgupta & T.S. Mruthyunjaya, Newton–Euler formulation for the inverse dynamics of the stewart platform manipulator, Mechanism and Machine Theory, 33(8), 1998, 1135–1152.
  21. [21] F. Pierrot, M. Uchiyama, P. Dauchez, & A. Fournier, A new design of a 6-DOF parallel robot, Journal of Robotics and Mechatronics, 2(4), 1990, 308–315.
  22. [22] L.W. Tsai, Robot Analysis, the Mechanics of Serial and Parallel Manipulators (New York, USA: John Wiley & Sons, 1999).
  23. [23] B. Zhang, Design and implementation of a 6 DOF parallel manipulator with passive force control, Ph.D. Dissertation, University of Florida, Gainesville, FL, 2005.
  24. [24] D. Stewart, A Platform with six degrees of freedom, Proc. IMechE, 180, Pt. 1, No. 15, 1965–66, 371–385.

Important Links:

Go Back