SLIDING-MODE CONTROL FOR TELE-ROBOTIC NEUROSURGICAL SYSTEM

Y. Shen, W. Shen, and J. Gu

References

  1. [1] National Trauma Registry, 2003 Report: Major Injury inCanada, 2003.
  2. [2] Y.S. Kwoh, J. Hou, E.A. Jonckheere et al., A robot with improved absolute positioning accuracy for CT-guided stereo-tactic brain surgery, IEEE Trans. on Biomedical Engineering, 35, February 1988, 153–161. doi:10.1109/10.1354
  3. [3] D. Glauser, P. Flury, N. Villotte, & C. Burckhardt, Mechanical concept of the neurosurgical robot minerva, Robotica, 11, 1993, 567–575.
  4. [4] S. Lavallee, J. Troccaz et al., Image-guided operating robot: A clinical application in stereotactic neurosurgery, in R.H. Taylor, S. Lavallee, G.C. Burdea, & R. Mosges (Eds.), Computer-integrated surgery (Cambridge, MA: MIT Press, 1996), 343–352.
  5. [5] K. Masamune, E. Kobayashi et al., Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery, Journal of Image Guided Surgery, 1, 1995, 242–248. doi:10.1002/(SICI)1522-712X(1995)1:4<242::AID-IGS7>3.0.CO;2-A
  6. [6] K. Chinzei, N. Hata et al., MR compatible surgical assist robot: System integration and preliminary feasibility study, Medical image computing and computer assisted intervention (MICCAI) (London, UK: Springer, 2000), 921–930.
  7. [7] W.A. Kaiser, H. Fischer et al., Robotic system for biopsy and therapy of breast lesions in a high-field whole-body magnetic resonance tomography unit, Investigative Radiology, 35, 2000, 513–519. doi:10.1097/00004424-200008000-00008
  8. [8] S.P. Bai & M.Y. Teo, A robotic neuro-surgery system and its calibration by using a motion tracking system, Proc. 2002 IEEE Int. Workshop on Robot and Human Interactive Communication, Berlin, Germany, September 2002, 436–441.
  9. [9] W. Leland, M. Taqqu, W. Willinger, & D. Wilson, Onthe self-similar nature of ethernet traffic (extended version), IEEE/ACM Trans. Networking, 2, February 1994, 1–15. doi:10.1109/90.282603
  10. [10] I. Elhaij, N. Xi, W.K. Fung, Y.-H. Liu et al., Supermedia-enhanced Internet-based telerobotics, Proc. IEEE, 91(3), 396–421. doi:10.1109/JPROC.2003.809203
  11. [11] L.F. Penin, Teleoperation with time delay a survey and its use in space robotics, Proc. 6th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA 2000), ESTEC, Noordwijk, the Netherlands, December 2000.
  12. [12] R.J. Anderson & M.W. Spong, Bilateral control of teleoperators with time delay, IEEE Trans. on Automatic Control, 34(5), 1989, 494–501. doi:10.1109/9.24201
  13. [13] G. Niemeyer & J.E. Slotine, Stable adaptive teleoperation, IEEE Journal of Oceanic Engineering, 16(1), 152–162. doi:10.1109/48.64895
  14. [14] D.A. Lawrence, Stability and transparency in bilateral tele-manipulation, IEEE Trans. on Robotics and Automation, 9(5), 1993, 624–637. doi:10.1109/70.258054
  15. [15] T. Yoshikawa & J. Ueda, Analysis and control of master–slave systems with time delay, Proc. IEEE Int. Conf. on Intelligent Robots and Systems, 1996, 1366–1373. doi:10.1109/IROS.1996.568994
  16. [16] S. Munir & W.J. Book, Internet-based teleoperation using wave variables with prediction, IEEE/ASME Trans. on Mechatronics, 7(2), 2002, 124–133. doi:10.1109/TMECH.2002.1011249
  17. [17] A. Eusebi & C. Melchiorri, Stability and control issues for tele-manipulation systems with time-delays, IFAC’96 World Congress, 1996.
  18. [18] S. Lee & H.S. Lee, Modeling, design, and evaluation of advanced teleoperator control systems with short time delay, IEEE Trans. on Robotics and Automation, 9(5), October 1993.
  19. [19] R. Oboe & P. Fiorini, A design and control environment for Internet-based telerobotics, The International Journal of Robotics Research, 17(4), April 1998, 433–449. doi:10.1177/027836499801700408
  20. [20] G.M.H. Leung et al., Bilateral controller for teleoperators with time delay via µ-synthesis, IEEE Trans. on Robotics and Automation, 11(1), 1995, 3126–3131. doi:10.1109/70.345941
  21. [21] A. Sano et al., Network-based force-reflecting teleoperation, Proc. of IEEE Int. Conf. on Robotics and Automation, San Francisco, CA, 2000.
  22. [22] A.W. Olbrot, A suffciently large time delay in feedback loop must destroy exponential stability of any decay rate, IEEE Trans. on Automatic Control, 28, 1984, 367–368. doi:10.1109/TAC.1984.1103536
  23. [23] S. Boyd, L. EI Ghaoui, E. Feron, & V. Balakrishan, Linear matrix inequality and control theory (Philadelphia, PA: SIAM, 1994).
  24. [24] M. Fu, H. Li, & S.I. Niculescu, Robust stability and stabilization of time-delay system via integral quadratic constraint approach, Lecture notes in control and information science, 228 (Berlin: Springer, 1997), 4601–4606.
  25. [25] V.B. Kolmanovskii, S.I. Niculescu, & J.P. Richard, On the Lyapunov–Krasovskill functionals for stability analysis of linear delay systems, Int. Control, 72(4), 1999, 374–384. doi:10.1080/002071799221172
  26. [26] X. Li & C.E. De Souza, Delay-dependent robust stability and stabilization of uncertain linear delay systems: A linear matrix inequality approach, IEEE Trans. Automatic Control, 42(8), 1997, 1144–1148. doi:10.1109/9.618244
  27. [27] S.K. Nguang, Robust H∞ control of a class of nonlinear systems with delayed state and control: A LMI approach, 37th IEEE 30 Conf. on Decision and Control (ACC’98), Tampa, FL, USA, 1998, 2384–2389. doi:10.1109/CDC.1998.757732
  28. [28] S.I. Niculescu, H∞ memoryless control with an α-stability constraint for time delays systems: An LMI approach, IEEE Trans. on Automatic Control, 43(5), 1998, 739–743. doi:10.1109/9.668850
  29. [29] L. Dugard & E.I. Verriest, Stability and control of time-delay systems, Lecture notes in control and information sciences, Vol. 228 (Berlin: Springer, 1997).
  30. [30] J.-P. Richard, Some trends and tools for the study of time-delay systems, Plenary lecture, Proc. 2nd IEEE-IMACS Conf. on Computation Engineering in Systems Application (CESA’98), Tunisia, 1998, 27–43.
  31. [31] X. Li & C.E. De Souza, Robust stabilization and H∞ control of uncertain linear time-delay systems, Proc. 13th IFAC World Congress, San Francisco, CA, Vol. H, 1996, 113–118.
  32. [32] G. Conte & A.M. Perdon, The disturbance decoupling problem for systems of a ring, SIAM Journal of Control Optimization, 33(3), 1995, 750–764. doi:10.1137/S0363012992235638
  33. [33] P. Picard, J.F. Lafay, & V. Kucera, Model matching for linear system with delays and 2-D systems, Automatica, 34(2), 1998, 23–45. doi:10.1016/S0005-1098(98)00177-0
  34. [34] V.I. Utkin, Sliding mode in control optimization, CCES (Berlin: Springer, 1992).
  35. [35] A.S.C. Sinha, M. El Sharkawy, & M. Rizkalla, Sliding mode control of uncertain delay differential systems, Nonlinear Analysis, Theory, Methods and Applications, 30, 1997, 1075–1086.
  36. [36] K.K. Shyu & J.J. Yan, Robust stability of uncertain time-delay systems and its stabilization by variable structure method, International Journal of Control, 57, 1993, 237–246. doi:10.1080/00207179308934385
  37. [37] X. Li & S. Yurkovich, Sliding mode control of delayed system with application to engine idle speed control, IEEE Trans. on Control System Technology, 9, 2001, 802–810. doi:10.1109/87.960343
  38. [38] F. Gouaisbaut, Y. Blanco, & J.P. Richard, Robust control of a nonlinear time delay: A sliding mode control design, Preprints of 5th IFAC Symp. Nonlinear Control System, Saint Petersburg, Russia, 2001.
  39. [39] H.H. Choi, A new method for variable structure control system: A linear matrix inequality approach, Automatica, 33, 1997, 2089–2092. doi:10.1016/S0005-1098(97)00118-0
  40. [40] Y. Niu, J. Lam, X. Wang, & D.W.C. Ho, Sliding-mode control for nonlinear state-delayed systems using neural-networks approximation, IEE Proc.: Control Theory Applications, 150(3), 2003, 233–239. doi:10.1049/ip-cta:20030321
  41. [41] H.Y. Chung & W.J. Chang, Covariance control with variance constraints for continuous perturbed stochastic systems, System Control Letters, 19(5), 1992, 413–417. doi:10.1016/0167-6911(92)90091-6
  42. [42] R.Z. Khasminskii, Stochastic stability of differential equations (Alphen aan den Rijn: Sijthoff and Noordhoff, 1980).

Important Links:

Go Back