DEVELOPMENT OF MULTI-DIRECTIONAL COMPLIANT JOINT MODULE FOR HUMAN-CARE ROBOT

S. Ka jikawa

References

  1. [1] J.K. Salisbury & M.T. Manson, Robot hands and the mechanics of manipulation (Cambridge, MA: MIT Press, 1985).
  2. [2] S.C. Jacobsen, E.K. Iversen, D.F. Knutti, R.T. Johnson, & K.B. Biggers, Design of the Utah/MIT dextrous hand, Proc. IEEE Conf. on Robotics and Automation, San Francisco, CA, 1986, 1520–1532.
  3. [3] J. Butterfass, M. Grebenstein, H. Lieu, & G. Hirzinger, DLR-Hand II: Next generation of a dextrous robot hand, Proc. IEEE Conf. on Robotics and Automation, Seoul, Korea, 2001, 109–114.
  4. [4] C.S. Lovchik & M.A. Diftler, The robonaut hand: A dexterous robot hand for space, Proc. IEEE Conf. on Robotics and Automation, Detroit, MI, 1999, 907–912.
  5. [5] H. Kawasaki, T. Mouri, & S. Ito, Toward next stage of kinematic humanoid hand, Proc. 10th Int. Symp. on Robotics and Applications (WAC2004-ISORA2004), Seville, Spain, 2004.
  6. [6] P. Dario, M.C. Carrozza, E. Guglielmelli, C. Lashi, A. Menciassi, S. Micera, & F. Vecchi, Robotics as a future and emerging technology, IEEE Robotics and Automation Magazine, June, 2005, 29–44. doi:10.1109/MRA.2005.1458320
  7. [7] S. Ryew & H. Choi, Double active universal joint (DAUJ): Robotic joint mechanism for humanlike motions, IEEE Trans. on Robotics and Automation, 17(3), 2001, 290–300. doi:10.1109/70.938386
  8. [8] K. Ikuta, H. Ishii, & M. Nokata, Safety evaluation method of design and control for human-care robots, International Journal of Robotics Research, 22(5), 2003, 281–297. doi:10.1177/0278364903022005001
  9. [9] A. Bicchi & G. Tonietti, Dealing with the safety-performance tradeoff in robot arms design and control-fast and soft-arm tactics, IEEE Robotics and Automation Magazine, 11, 2004, 22–33. doi:10.1109/MRA.2004.1310939
  10. [10] T. Noritsugu & T. Tanaka, Application of rubber artificial muscle manipulator as a rehabilitation robot, IEEE/ASME Trans. on Mechatronics, 2, 1997, 259–267. doi:10.1109/3516.653050
  11. [11] N. Saga & T. Saikawa, Flexor mechanism of robot arm using pneumatic muscle actuators, Proc. 2005 IEEE Int. Conf. on Mechatronics and Automation, Niagra Falls, Canada, 2005, 1261–1266. doi:10.1109/ICMA.2005.1626734
  12. [12] B. Tondu, S. Ippolito, J. Guiochet, & A. Daidie, A seven-degrees-of-freedom robot-arm driven by pneumatic artificial muscles for humanoid robots, International Journal of Robotics Research, 24(4), 2005, 257–274. doi:10.1177/0278364905052437
  13. [13] K.H. Low, Initial experiments on a leg mechanism with a flexible geared joint and footpad, Advanced Robotics, 19(4),2005, 373–399. doi:10.1163/1568553053662546
  14. [14] S. Sugano, S. Tsuto, & I. Kato, Force control of the robot finger joint equipped with mechanical compliance adjuster, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Raleigh, NC, 1992, 2005–2013.
  15. [15] H. Iwata, H. Hoshino, T. Morita, & S. Sugano, A physical interference adapting hardware system using MIA arm and humanoid surface covers, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Kyongju, Korea, 1999, 1216–1221.
  16. [16] G.A. Pratto & M.M. Williamson, Series elastic actuators, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 1, Pittsburgh, PA, 1995, 399–406.
  17. [17] M. Zinn, O. Khatib, & J.K. Salisbury, A new actuation approach for human friendly robot design, International Journal of Robotics Research, 23(4–5), 2004, 379–398. doi:10.1177/0278364904042193
  18. [18] I. Yamano, K. Takemura, & T. Maeno, Development of a robot finger for five-fingered hand using ultrasonic motors, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Las Vegas, NV, 2003, 2648–2653.
  19. [19] D. Terzopoulos, & K. Fleisher, Modeling inelastic deformation: Vicoelasticity, plasticity, fracture, Computer Graphics, 22(4), 1988, 269–278.
  20. [20] S. Tokumoto, Y. Fujita & S. Hirai, Deformation modeling of viscoelastic objects for their shape control, Proc. IEEE Conf. on Robotics and Automation, Detroit, MI, 1999, 767–772.

Important Links:

Go Back