SOFT TISSUE DEFORMATION WITH NEURAL DYNAMICS FOR SURGERY SIMULATION

Y. Zhong, B. Shirinzadeh, and J. Smith

References

  1. [1] Y. Zhang, E.C. Prakash, & E. Sung, A new physical model with multilayer architecture for facial expression animation using dynamic adaptive mesh, IEEE Trans. on Visualization and Computer Graphics, 10(3), 2004, 339–352. doi:10.1109/TVCG.2004.1272733
  2. [2] K. Choi, H. Sun, & P.A. Heng, Interactive deformation of soft tissues with haptic feedback for medical learning, IEEE Trans. on Information Technology in Biomedicine, 7(4), 2003, 358–363. doi:10.1109/TITB.2003.821311
  3. [3] D. Terzopoulos, J. Platt, A. Barr, & K. fleischer, Elastically deformable models, Computer Graphics, 21(4), 1987, 205–214. doi:10.1145/37402.37427
  4. [4] J.S. Rotnes, J. Kaasa, & G. Westgaard et al., Realism in surgical simulators with free-form geometric modeling, Int. Congress Series, 1230, 2001, 1032–1037. doi:10.1016/S0531-5131(01)00181-9
  5. [5] M.-P. Cani-Gascuel & M. Desbrun, Animation of deformable models using implicit surfaces, IEEE Trans. on Visualization and Computer Graphics, 3(1), 1997, 39–50. doi:10.1109/2945.582343
  6. [6] S. Cotin, H. Delingette, & N. Ayache, Real-time elastic deformations of soft tissues for surgery simulation, IEEE Trans. on Visualization and Computer Graphics, 5(1), 1999, 62–73. doi:10.1109/2945.764872
  7. [7] C. Basdogan, S. De, & J. Kim et al., Haptics in minimally invasive surgical simulation and training, IEEE Computer Graphics and Applications, 24(2), 2004, 56–64. doi:10.1109/MCG.2004.1274062
  8. [8] D. James & D. Pai, Artdefo accurate real time deformable objects, Proc. 26th Annual Conf. on Computer Graphics and Interactive Techniques, Los Angeles, 1999, 65–72. doi:10.1145/311535.311542
  9. [9] C. Monserrat, U. Meier, & M. Alcaniz et al., A new approach for the real-time simulation of tissue deformations in surgery simulation, Computer Methods and Programs in Biomedicine, 64, 2001, 77–85. doi:10.1016/S0169-2607(00)00093-6
  10. [10] M. Bro-Nielsen, Finite element modeling in surgery simulation, Proc. IEEE, 86(3), 1998, 490–503. doi:10.1109/5.662874
  11. [11] G. Debunne, M. Desbrun, M.P. Cani, & A.H. Barr, Dynamic real-time deformations using space and time adaptive sampling, Proc. 28th Annual Conf. on Computer Graphics and Interactive Techniques, Los Angeles, 2001, 31–36. doi:10.1145/383259.383262
  12. [12] S. Cotin, H. Delingette, & N. Ayache, A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation, The Visual Computer, 16(8), 2000, 437–452.
  13. [13] Y.C. Fung, Biomechanics: Mechanical properties of living tissues, Second Edition (New York: Springer-Verlag, 1993).
  14. [14] R.M. Kenedi, T. Gibson, J.H. Evans, & J.C. Barbenel, Tissues mechanics, Physics in Medicine & Biology, 20(5), 1975, 699–717. doi:10.1088/0031-9155/20/5/001
  15. [15] W. Maurel, Y. Wu, & N.M.T.D. Thalmann, Biochemical models for soft tissue simulation, ESPRIT Basic Research Series (New York: Springer-Verlag, 1998).
  16. [16] G. Picinbono, H. Delingette, & N. Ayache, Non-linear anisotropic elasticity for real-time surgery simulation, Graphical Models, 65(5), 2003, 305–321. doi:10.1016/S1524-0703(03)00045-6
  17. [17] J. Barbic & D.L. James, Deformable models: Real-time subspace integration for St. Venant-Kirchhoff deformable models, ACM Trans. on Graphics, 24(3), 2005, 982–990. doi:10.1145/1073204.1073300
  18. [18] J.-M. Schwartz, M. Denninger, D. Rancourt, C. Moisan et al., Modelling liver tissue properties using a non-linear visco-elastic model for surgery simulation, Medical Image Analysis, 9(2),2005, 103–112. doi:10.1016/j.media.2004.11.002
  19. [19] U. Meier, O. Lopez, C. Monserrat, M.C. Juan et al., Real-time deformable models for surgery simulation: A survey, Computer Methods and Programs in Biomedicine, 77(3), 2005, 183–197. doi:10.1016/j.cmpb.2004.11.002
  20. [20] A. Nurnberger, A. Radetzky, & R. Kruse, Using recurrent neuro-fuzzy techniques for the identification and simulation of dynamic systems, Neurocomputing, 36, 2001, 123–147. doi:10.1016/S0925-2312(00)00339-8
  21. [21] A. Duysak, J.J. Zhang, & V. Ilankovan, Efficient modelling and simulation of soft tissue deformation using mass-spring systems, Int. Congress Series, 1256, 2003, 337–342. doi:10.1016/S0531-5131(03)00423-0
  22. [22] J.J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. National Academy of Sciences of the United States of America, 81, 1984, 3088–3092. doi:10.1073/pnas.81.10.3088
  23. [23] E.P. Popov, Engineering mechanics of solids (Englewood Cliffs, NJ: Prentice Hall, 1990).
  24. [24] M.H. Sadd, Elasticity: Theory, applications, and numerics (Amsterdam: Elsevier Butterworth Heinemann, 2005).
  25. [25] G.E. Karniadakis & R.M. Kirby II, Parallel scientific computing in C++ and MPI: A seamless approach to parallel algorithms and their implementation (New York: Cambridge University Press, 2003).
  26. [26] H.K. Versteeg & W. Malalasekera, An introduction to computational fluid dynamics: The finite volume method (Harlow, Essex, England: Longman Scientific & Technical, 1995).
  27. [27] M.A. Cohen & S. Grossberg, Absolute stability of global pattern formation and parallel memory storage by competitive neural networks, IEEE Trans. on Systems, Man, and Cybernetics, 13(5), 1983, 815–821.
  28. [28] OpenHaptics ToolKit-Programmer’s Guide, Sensable Technologies, 2004.
  29. [29] G. Picinbono, J.-C. Lombardo, H. Delingette, & N. Ayache, Improving realism of a surgery simulator: Linear anisotropic elasticity, complex interactions and force extrapolation, Journal of Visualization and Computer Animation, 13(3), 2002, 147–167.

Important Links:

Go Back