STEADY STATE ANALYSIS OF INDUCTION GENERATOR INFINITE BUS SYSTEMS

R.G. Kavasseri

References

  1. [1] J.M. Rodriguez, J.L. Fernandez, D. Beato, R. Iturbe, J. Usaola, P. Ledesma, & J.R. Wilhelmi, Incidence on power system dynamics of high penetration of fixed speed and doubly fed wind energy systems: Study of the Spanish case, IEEE Trans. on Power Systems, 17(4), 2002, 1089–1095. doi:10.1109/TPWRS.2002.804971
  2. [2] F.P. de Mello, J.W. Feltes, L.N. Hannett, & J.C. White, Application of induction generators in power system, IEEE Trans. on Power Apparatus and Systems, 101(9), 1982, 3385– 3393. doi:10.1109/TPAS.1982.317510
  3. [3] A.E. Feijoo & J. Cidras, Modeling of wind farms in the load flow analysis, IEEE Trans. on Power Systems, 15(1), 2000, 110–115. doi:10.1109/59.852108
  4. [4] M. Pöller & S. Achilles, Aggregated wind park models for analyzing power system dynamics, Proc. 4th Int. Workshop on Large Scale Integration of Wind Power and Transmission Networks for Offshore Wind Farms, Billund, Denmark, 2003.
  5. [5] E.G. Potamianakis & C.D. Vournas, Aggregation of wind farms in distribution networks, Proc. European Wind Energy Conference and Exhibition, Madrid, Spain, 2003.
  6. [6] E. Muljadi, Y. Wan, C.P. Buttefield, & B. Parsons, A study of a wind farm power system, Report: NREL/CP-500-30814, National Renewable Energy Laboratory, Golden, U.S.A.
  7. [7] D.S. Brereton, D.G. Lewis, & C.C. Young, Representation of induction motor loads during power system stability studies, AIEE Trans., 76, 1957, 451–461.
  8. [8] R.G. Kavasseri, Steady state analysis of an induction generator infinite bus system, Proc. 3rd IASTED Int. Conf. Power and Energy Systems, Marbella, Spain, 2003.
  9. [9] J. Cidras & A.E. Feijoo, A linear dyanamic model for aynchronous wind turbines with mechanical fluctuations, IEEE Trans. on Power Systems, 17(3), 2002, 681–687. doi:10.1109/TPWRS.2002.800912
  10. [10] A.E. Feijoo & J. Cidras, Analysis of mechanical power fluctuations in aynchronous WEC’s, IEEE Trans. on Energy Conversion, 14(3), 1999, 284–291. doi:10.1109/60.790871
  11. [11] J.R. Winkelman & S. H. David, Control design and performance analysis of a 6 MW wind turbine generato, IEEE Trans. on Power Apparatus Systems, 102(5), 1983, 1340–1347. doi:10.1109/TPAS.1983.318083
  12. [12] E.S. Abdin & W. Xu, Control design and dynamic performance analysis of a wind turbine-induction generator unit, IEEE Trans. on Energy Conversion, 15(1), 2000, 91–96. Appendix A: Induction Generator Data The machine constants To , x a nd xo are defined as follows: Table 5 Electrical Data for Induction Generators in P.U. (On Machine Base) Parameter Case 1 Case 2 Case 3 xr 0.143 0.0639 0.135 xs 0.0087 0.1878 1.19 rr 0.019 0.00612 0.0339 rs 0.0059 0.00571 0.0059 xM 4.76 2.78 4.161 To = xr + xm ωsrr , xo = xr + xm, x = xs + xrxm xr + xm . The system parameters are assumed to be Eb = 1.0 p.u., re = 0. Appendix B: Coefficients and Parameters In (5), the parameters are described as follows: a11 = re + rs − x Y cre − Ycrsxe a12 = xe + x + Ycrsre − Ycx x e b1 = Erre − Emxe + Ebrs, b2 = Emre + Erxe + EbxI n (7–9) the parameters are described as follows: a2 = xe + x − Ycxex , b1 = a2 − xe a2x , xa = xo − xb 2 = αo(1 + xab1), αo = 1 To , a3 = αoxaEb a2 , a4 = Eb 2Ha2 In Proposition 3, the coefficients η1, . . . , η7 are defined as follows: η1 = K1c4 b2 , η2 = −2abc4 K1 + 4c2 x b2 K1 η3 = K1a2 c4 + 4x 2 b2 K1 + 2c2 x 2 b2 K1 − 8abc2 x K 1 − K2b2 c2 η4 = 4c2 a2 x K 1 + 4x 3 b2 K1 − 4abc2 x 2 K1 − 8x 2 ab + 2abc2 K2 η5 = 4x 2 a2 K1 + 2c2 a2 x 2 K1 − 8abx 3 K1 + x 4 b2 K1 − K2a2 c2 − b2 x 2 K2 + 4abcx K 2 η6 = −2abx 4 K1 − 2cx a2 K2 + 2abx 2 K2 η7 = K1x 4 a2 − K2x 2 a2 66 where: a = αo(1 + xa), b = αoYcxe, c = 1 − Ycx , K1 = 4P2 mω2 s , K2 = 4PmωsαoxaE2 b doi:10.1109/60.849122

Important Links:

Go Back