ON THE SIMPLIFICATION OF AN EXAMPLES-BASED CONTROLLER WITH SUPPORT VECTOR MACHINES

A. Shmilovici, G.H. Bakir, A. Figueras, and J. Llu´s de la Rosa

References

  1. [1] T.M. Mitchell, Machine learning (New York: McGraw-Hill,1997).
  2. [2] M.J. Berry & G. Linoff, Data mining techniques (John-Wiley,1997).
  3. [3] O. Maimon & L. Rokach (Eds.), Data mining and knowledgediscovery handbook: A complete guide for practitioners andresearchers (Kluwer, 2005).
  4. [4] V. Vapnik, Statistical learning theory (New York: Wiley, 1998).
  5. [5] K.-R. Muller, S. Mika, G. Ratsch, K. Tsuda, & B. Scholkopf,An introduction to kernel-based learning algorithms, IEEENeural Networks, 12(2), 2001, 181–201. doi:10.1109/72.914517
  6. [6] A. Shmilovici, Support vector machines, in O. Maimon &L. Rokach (Eds.), Data mining and knowledge discovery handbook: A complete guide for practitioners and researchers,Kluwer, 2005.
  7. [7] G. Bontempi, M. Birattari, & H. Bersini, Lazy learning forlocal modeling and control design, International Journal ofControl, 72(7/8), 1999, 643–658. doi:10.1080/002071799220830
  8. [8] C.G. Atkeson, A.W. Moore, & S. Schaal, Locally weightedlearning, Artificial Intelligence Review, 11(1–5), 1997, 11–73. doi:10.1023/A:1006559212014
  9. [9] C.P. Diehl & G. Cauwenberghs, SVM incremental learning,adaptation and optimization, Proc. IJCNN’2003 IEEE Int.Joint Conf. on Neural Networks, Portland, OR, July 20–23,2003, 2685–2690.
  10. [10] J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. DeMoor, & J. Vandewalle, Least squares support vector machines(Singapore: World Scientific, 2002).
  11. [11] J.A.K. Suykens, J. Vandewalle, & B. De Moor, Optimal controlby least squares support vector machines, Neural Networks,14(1), 2001, 23–35.77 doi:10.1016/S0893-6080(00)00077-0
  12. [12] C.J.C. Burges, A tutorial on support vector machines forpattern recognition, Data Mining and Knowledge Discovery,2(2), 1998, 121–167. doi:10.1023/A:1009715923555
  13. [13] A. Smola & B. Scholkopf, Learning with kernels (Cambridge,MA: MIT Press, 2002).
  14. [14] C.-W. Hsu, C.-C. Chang, & C.-J. Lin, A practical guide to support vector classification, 2003, available at www.csie.ntu.edu.tw/∼cjlin/papers/guide/guide.pdf.
  15. [15] L. Kaufman, Solving the quadratic programming problemarising in support vector classification, in B. Scholkopf, C.J.C.Burges, & A.J. Smola (Eds.), Advances in kernel methods:Support vector learning (Cambridge, MA: MIT Press, 1998).
  16. [16] P.-H. Chen, C.-J. Lin, & B. Scholkopf, A tutorial on nu-supportvector machines, Applied Stochastic Models in Business andIndustry, 21(2), 2005, 111–136. doi:10.1002/asmb.537
  17. [17] RoboCup’98: Proc. 2nd Robot World Cup Competition andConferences (Springer-Verlag, 1998).
  18. [18] A. Oller, J.L. de la Rosa, R. Garcia, J.A. Ramon, & A. Figueras,A real implementation based on multi-agent decision makingstructure, Journal of Intelligent Automation and Soft Computing, 6(1), 2000, 65–74.
  19. [19] A. Figueras, J. Colomer, & J.L. de la Rosa, Supervision ofheterogeneous controllers for a mobile robot, Proc. of B’02,15th IFAC World Congress, Barcelona, July 21–26, 2002.
  20. [20] C.-C. Chang & C.-J. Lin, Training support vector classifiers:Theory and algorithms, Neural Computation, 13(9), 2001,2119–2147. doi:10.1162/089976601750399335
  21. [21] C.-C. Chang & C.-J. Lin, LIBSVM: A library for support vectormachines, 2001, software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.
  22. [22] J.A.K. Suykens, L. Lukas, & J. Vandewalle, Sparse approximation using least squares support vector machines, Proc. IEEEInt. Conf. on Circuits and Systems ISCAS2000, Geneva, May28–31, 2000, II-757–760.
  23. [23] G. Bontempi, M. Birattari, & H. Bersini H., Lazy learningtoolbox, 1999, available at iridia.ulb.ac.be/∼lazy/.

Important Links:

Go Back