PD-TYPE CONTROLLER IN TERMS OF GENERALIZED VELOCITY COMPONENTS

P. Herman

References

  1. [1] C. Canudas de Wit, B. Siciliano, & G. Bastin (Eds.), Theory of robot control (London: Springer-Verlag, 1996).
  2. [2] L. Sciavicco & B. Siciliano, Modelling and control of robot manipulators (New York: McGraw-Hill, 1996).
  3. [3] J.-J. Slotine & W. Li, Applied nonlinear control (Englewood Cliffs, NJ: Prentice-Hall, 1991).
  4. [4] M.W. Spong & M. Vidyasagar, Robot dynamics and control (New York: John Wiley & Sons, 1989).
  5. [5] J.T. Wen & D.S. Bayard, New class of control laws for robotic manipulators, Part 1: Non-adaptive case, International Journal of Control, 47, 1988, 1361–1385. 68
  6. [6] T.R. Kane & D.A. Levinson, The use of Kane’s dynamical equations in robotics, International Journal of Robotics Research, 2, 1983, 3–21. doi:10.1177/027836498300200201
  7. [7] T.A. Loduha & B. Ravani, On first-order decoupling of equations of motion for constrained dynamical systems, Trans. of the ASME Journal of Applied Mechanics, 62, 1995, 216–222. doi:10.1115/1.2895905
  8. [8] P. Herman & K. Kozłowski, Set point control for serial manipulators using generalized velocity components method, Proc. 10th ICAR’01, Budapest, August 23–25, 2001, 181–186.
  9. [9] P. Herman, Sliding mode control of manipulators using firstorder equations of motion with diagonal mass matrix, Journal of the Franklin Institute, 342, 2005, 353–363. doi:10.1016/j.jfranklin.2004.12.001
  10. [10] J.-C. Piedbeuf, J. de Carufel, & R. Hurteau, Friction and stick-slip in robots: Simulation and experimentation, Multibody System Dynamics, 4, 2000, 341–354. doi:10.1023/A:1009888213333
  11. [11] D. Koditschek, Natural motion for robot arms, Proc. 23rd IEEE Conf. on Decision and Control, Las Vegas, 1984, 733–735.
  12. [12] Ch.H. An, Ch.G. Atkeson, & J.M. Hollerbach, Model-based control of a robot manipulator (Cambridge, MA: MIT Press, 1988).

Important Links:

Go Back