A MODEL FOR OPTIMIZATION AND CONTROL OF SPATIAL COMPLIANT MANIPULATORS

S.L. Canfield and J.W. Beard

References

  1. [1] G.K. Ananthasuresh & S. Kota, Designing compliant mechanisms, Mechanical Engineering, November 1995, 93–96.
  2. [2] M.I. Frecker, G.K. Ananthasuresh, S. Nishiwaki, N. Kikuchi, & S. Kota, Topological synthesis of compliant mechanisms using multi-criteria optimization, Trans. ASME Journal of Mechanical Design, 119, 1997, 238–245. doi:10.1115/1.2826242
  3. [3] A. Saxena & G.K. Ananthasuresh, On an optimal property of compliant topologies, International Research Journal of Structural Optimization, 19(1), 2000, 36–49. doi:10.1007/s001580050084
  4. [4] S.L. Canfield & R. Parsons, Genetic programming techniques for designing compliant mechanisms, International Journal of Structural and Multidisciplinary Optimization, 24(1), 2002, 78–86. doi:10.1007/s00158-002-0216-0
  5. [5] L.L. Howell & A. Midha, A method for the design of compliant mechanisms with small-length flexural pivots, ASME Journal of Mechanical Design, 116, 1994, 280–290.
  6. [6] L. Howell & A. Midha, A loop-closure theory for the analysis and synthesis of compliant mechanisms, ASME Journal of Mechanical Design, 118(1), 1996, 121–125. doi:10.1115/1.2826842
  7. [7] K. Fite & M. Goldfarb, Position control of a compliant mechanism based micromanipulator, Proc. 1999 IEEE Int. Conf. on Robotics and Automation, Detroit, MI, 1999, 2122–2127. doi:10.1109/ROBOT.1999.770420
  8. [8] S.L. Canfield, J.W. Beard, N. Lobontiu, E. O’Malley, M. Samuelson, & J. Paine, Development of a spatial compliant manipulator, International Journal of Robotics and Automation, 17(1), 2002, 63–72.
  9. [9] S. Canfield, J. Beard, M. Stefanick, D. Bennett, N. Lobontiu, & J. Paine, Optimization and control of a spatial compliant manipulator, Proc. 2002 ASME Design Engineering Technical Conf., Montreal, 2002, DETC2002/MECH-34201.
  10. [10] C. Kimball, L.W. Tsai, D. Devoe, & J. Maloney, Modeling and batch fabrication of spatial micro-manipulators, Proc. 2000 17 Design Engineering Technical Conf., Baltimore, MD, 2000, DETC2000/MECH-14116.
  11. [11] J. Joo, S. Kota, & N. Kikuchi, Nonlinear synthesis of compliant mechanisms: Topology design, Proc. 2000 Design Engineering Technical Conf., Baltimore, MD, 2000, DETC2000/MECH14141.
  12. [12] J. Joo, S. Kota, & N. Kikuchi, Large deformation behavior of compliant mechanisms, Proc. 2001 Design Engineering Technical Conf., Pittsburgh, PA, 2001, DETC2001/DAC-21084.
  13. [13] A. Saxena & G.K. Ananthasuresh, Towards the design of compliant continuum topologies with geometric nonlinearity, Proc. 1999 Design Engineering Technical Conf., Las Vegas NV, 2001, DETC99/DAC-8578.
  14. [14] L. Meirovitch, Elements of vibration analysis, 2nd ed. (Boston: McGraw-Hill, 1986).
  15. [15] M.A. Crisfield, Nonlinear finite element analysis of solids and structures, Vol. 1 (Chichester, UK: John Wiley & Sons, 1991).
  16. [16] F. Trochu & Y.Y Qian, Nonlinear finite element simulation of superelastic shape memory alloy parts, Computers & Structures, 62(5), 1997, 799–810. doi:10.1016/S0045-7949(96)00288-X
  17. [17] J.S. Przemieniecki, Theory of matrix structural analysis (New York: Dover, 1968).
  18. [18] D.L. Logan, A first course in the finite element method using Algor, 2nd ed. (Pacific Grove, CA: Brooks/Cole, 2001).
  19. [19] G. Narayanan & C.S. Krishnamoorthy, An investigation of geometric non-linear formulations for 3D beam elements, International Journal of Non-Linear Mechanics, 25(6), 1990, 643–662. doi:10.1016/0020-7462(90)90004-S
  20. [20] C. Oran, Tangent stiffness in space frames, ASCE Proc., Journal of the Structural Division, 99(2), 1973, 987–1001.

Important Links:

Go Back