A REACTIVE PATH-FOLLOWING CONTROLLER TO GUARANTEE OBSTACLE AVOIDANCE DURING THE TRANSIENT PHASE

V. Cadenat, P. Souères, and T. Hamel

References

  1. [1] J.-P. Laumond (Ed.), Robot motion and control, Lectures Notes in Control and Information Sciences, 1998, 229.
  2. [2] C. Canudas, H. Khennouf, C. Samson, & O.J. Sordalen, Nonlinear control design for mobile robots, Recent Trends in Mobile Robots, World Scientific Series in Robotics and Automated Systems, Vol. 11, 1993, 121–156.
  3. [3] W.E. Dixon, D.M. Dawson, E. Zergeroglu, & A. Behal, Nonlinear control of wheeled mobile robots, Vol. 262, Lecture Notes in Control and Information Sciences (London Ltd: Springer Verlag, 2000).
  4. [4] C. De Medio & G. Oriolo, Robot obstacle avoidance using vortex fields, in S. Stifter & J. Lenar (Eds.), Advances in robot kinematics (Wein: Springer Verlag, 1991), 227–235.
  5. [5] A. De Luca & G. Oriolo, Local incremental planning for nonholonomic mobile robots, Proc. IEEE Int. Conf. on Robotics and Automation, San Diego, CA, 1994, 104–110. doi:10.1109/ROBOT.1994.351003
  6. [6] M. Khatib & R. Chatila, An extended potential field approach for mobile robot sensor-based motions, Proc. IAS’4, Karlsruhe, Germany, 1995, 490–496.
  7. [7] J. Borenstein & Y. Koren, Real-time obstacle avoidance for fast mobile robots, IEEE Trans. on Systems, Man, and Cybernetics, 19(5), 1989, 1179–1187. doi:10.1109/21.44033
  8. [8] I. Ulrich & J. Borenstein, VFH+: Reliable obstacle avoidance for fast mobile robots, Proc. IEEE Int. Conf. on Robotics and Automation, Leuven, Belgium, May 1998, 1572–1577. doi:10.1109/ROBOT.1998.677362
  9. [9] D.E. Koditscheck, Some applications of natural motion control, Trans. ASME, Journal of Dynamic Systems, Measurement and Control, 113, December 1991, 552–557.
  10. [10] J. Guldner & V.I. Utkin, Sliding mode control for gradient tracking and robot navigation using artificial potential fields, IEEE Trans. on Robotics and Automation, 11(2), 1995, 247– 254. doi:10.1109/70.370505
  11. [11] S. Quilan, Real-time modification of collision free paths, doctoral diss., Stanford University, 1995.
  12. [12] F. Lamiraux, D. Bonnafous, & K. Van Geem, Path optimization for nonholonomic systems: Application to reactive obstacle avoidance and path-planning, in A. Bicchi, H.I. Christensen, & D. Prattichizzo (Eds.), Control Problems in Robotics, Springer 263 tracts in advanced robotics (Berlin/Heidelberg: Springer, 2003), 1–18. doi:10.1007/3-540-36224-X_1
  13. [13] T. Hamel & D. Meizel, Robust control laws for wheeled mobile robots, International Journal of Systems Science, 27(8), 1996, 695–704. doi:10.1080/00207729608929269
  14. [14] T. Hamel, P. Souères, & D. Meizel, A two-steps robust pathfollowing controller for wheeled robots, Proc. 5th Symp. on Robot Control, SYROCO’97, Nantes, France, September 1997, 17–24.
  15. [15] W.L. Nelson & I.J. Cox, Local path control for autonomous vehicle, Proc. IEEE Int. Conf. on Robotics and Automation (ICRA’88), Philadelphia, PA, 1988, 1504–1510. doi:10.1109/ROBOT.1988.12280
  16. [16] M. Sampei, T. Tamura, T. Itoh, & M. Nakamichi, Path tracking control of trailer-like mobile robot, Proc. Int. Workshop on Intelligent Robots and Systems (IROS’91), Osaka, Japan, 1991, 193–198. doi:10.1109/IROS.1991.174448
  17. [17] C. Samson, Path-following and time-varing feedback stabilization of a wheeled mobile robot, Proc. ICARCV’92, Singapore, September 1993, RO–13.1.1–13.1.5.
  18. [18] C. Samson, Control of chained systems: Application to path following and time-varying point stabilization of mobile robots, IEEE Trans. on Automatic Control, 40(1), 1995, 64–77. doi:10.1109/9.362899
  19. [19] S. Fleury, M. Herrb, & R. Chatila, Design of a modular architecture for autonomous robot, IEEE Int. Conf. on Robotics and Automation, San Diego, May 1994, 3508–3513. doi:10.1109/ROBOT.1994.351031

Important Links:

Go Back