A GEOMETRIC DEFINITION OF ROTATIONAL STIFFNESS AND DAMPING APPLIED TO IMPEDANCE CONTROL OF PARALLEL ROBOTS

L.E. Bruzzone and R.M. Molfino

References

  1. [1] B. Siciliano & L. Villani, Robot force control (Boston: Kluwer, 2000).
  2. [2] L. Rey & R. Clavel, The Delta robot: A position paper, Annals of CIRP, 47, 1998, 347–351.
  3. [3] F. Caccavale, B. Siciliano, & L. Villani, The Tricept robot: Dynamics and impedance control, IEEE/ASME Trans. on Mechatronics, 8 (2), 2003, 263–268. doi:10.1109/TMECH.2003.812839
  4. [4] J.-P. Merlet, Parallel robots (Dordrecht: Kluwer, 2001).
  5. [5] G.M. Acaccia, L. Bruzzone, M. Callegari, R.C. Michelini, & R.M. Molfino, Exploiting functional and command redundancy for the process attuning of instrumental robots, Proc. 4th ECPD Int. Conf. on Advanced Robotics, Intelligent Automation and Active Systems, Moscow, 1998, 373–383.
  6. [6] G.M. Acaccia, L. Bruzzone, M. Callegari, R.C. Michelini, R.M. Molfino, & R.P. Razzoli, Functional assessment of the impedance controller of a parallely actuated robotic six d.o.f. rig, Proc. 6th IEEE Mediterranean Conf. on Control and Systems (MCCS), Alghero, Italy, 1998, 397–402.
  7. [7] E.D. Fasse & C.M. Gosselin, On the spatial impedance control of Gough-Stewart platforms, Proc. 1998 IEEE Int. Conf. on Robotics and Automation, Leuven, Belgium, 1998, 1749–1754. doi:10.1109/ROBOT.1998.677419
  8. [8] E.D. Fasse & C.M. Gosselin, Spatio-geometric impedance control of Gough-Stewart platforms, IEEE Trans. on Robotics and Automation, 15(2), 1999, 281–288. doi:10.1109/70.760349
  9. [9] J. Angeles, Rational kinematics (New York: Springer-Verlag, 1988).
  10. [10] F. Caccavale, B. Siciliano, & L. Villani, The role of Euler parameters in robot control, Asian Journal of Control, 1(1), 1999, 25–34.
  11. [11] S. Chiaverini & B. Siciliano, The unit quaternion: A useful tool for inverse kinematics of robot manipulators, Systems Analysis, Modelling and Simulation, 35, 1999, 45–60.
  12. [12] I.A. Bonev & J. Ryu, A new approach to orientation workspace analysis of 6-DOF parallel manipulators, Mechanism and Machine Theory, 36(1), 2001, 15–28. doi:10.1016/S0094-114X(00)00032-X
  13. [13] I.A. Bonev, D. Zlatanov, & C.M. Gosselin, Advantages of the modified Euler angles in the design and control of PKMs, Proc. 2002 Parallel Kinematic Machines Int. Conf. (PKS 2002), Chemnitz, Germany, 2002, 171–188.
  14. [14] R.L. Hollis, S.E. Salcudean, & A.P. Allan, A six-degree-offreedom magnetically levitated variable compliance fine-motion wrist: Design, modelling and control, IEEE Trans. on Robotics and Automation, 7, 1991, 320–332. doi:10.1109/70.88141
  15. [15] C. Natale, B. Siciliano, and L. Villani, Spatial impedance control of redundant manipulators, Proc. 1999 IEEE Int. Conf. on Robotics and Automation, Detroit, MI, 1999, 1788–1793. doi:10.1109/ROBOT.1999.770368
  16. [16] B. Siciliano & L. Villani, Six-degree-of-freedom impedance robot control, Proc. 8th Int. Conf. on Advanced Robotics and Automation, Monterey, CA, 1997, 387–392. doi:10.1109/ICAR.1997.620211
  17. [17] T. Valency & M. Zacksenhouse, Accuracy/robustness dilemma in impedance control, Journal of Dynamic Systems, Measurement, and Control, 125(3), 2003, 310–319. doi:10.1115/1.1590685
  18. [18] T. Valency & M. Zacksenhouse, Instantaneous model impedance control for robots, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Takamatsu, Japan, 2000, 757–762. doi:10.1109/IROS.2000.894695
  19. [19] F. Caccavale, B. Siciliano, & L. Villani, Robot impedance control with nondiagonal stiffness, IEEE Trans. on Automatic Control, 44, 1999, 1943–1946. doi:10.1109/9.793782
  20. [20] F. Caccavale, C. Natale, B. Siciliano, & L. Villani, Six-DOF impedance control based on angle/axis representations, IEEE Trans. on Robotics and Automation, 15, 1999, 289–300. doi:10.1109/70.760350
  21. [21] P.E. Nikravesh, Computer-aided analysis and design of mechanical systems (Englewood Cliffs, NJ: Prentice-Hall, 1988).
  22. [22] J.J. Craig, Introduction to robotics: Mechanics and control (Reading, MA: Addison-Wesley, 1989).
  23. [23] J. Loncaric, Normal forms of stiffness and compliance matrices, IEEE Trans. on Robotics and Automation, 3, 1987, 567–572.
  24. [24] D. Stewart, A platform with six degrees of freedom, The Institution of Mechanical Engineers, 180-1(15), 1965, 371–386. doi:10.1243/PIME_PROC_1965_180_029_02
  25. [25] V.E. Gough & S.G. Whitehall, Universal tyre test machine, Proc. 9th Int. Tech. Congress FISITA, London, 1962, 117–137.
  26. [26] E.F. Fichter, A Stewart platform-based manipulator: General theory and practical construction, International Journal of Robotics Research, 5(2), 1986, 157–182. doi:10.1177/027836498600500216
  27. [27] B. Mayer St-Onge & C.M. Gosselin, Singularity analysis and representation of the general Gough-Stewart platform, International Journal of Robotics Research, 19(3), 2000, 271–288. doi:10.1177/02783640022066860
  28. [28] D. Kim, W. Chung, & Y. Youm, Analytic singularity expression for 6-DOF Stewart platform-type parallel manipulators, Proc. 1998 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Victoria, Canada, 1998, 1015–1020. doi:10.1109/IROS.1998.727432
  29. [29] O. Ma & J. Angeles, Optimum architecture design of platform manipulators, Proc. 5th Int. Conf. on Advanced Robotics, ICAR ’91, Vol. 2, Pisa, Italy, 1991, 1130–1135.

Important Links:

Go Back