APPLICATIONS OF THE SPARSE HOUGH TRANSFORM FOR LASER DATA LINE FITTING AND SEGMENTATION

Z. Song, Y.Q. Chen, K.L. Moore, and L. Ma

References

  1. [1] M.D. Adams, Sensor modeling, design and data processing for autonomous navigation, Vol. 13 (Singapore: World Scientific, 1999).
  2. [2] I.R. Nourbakhsh, Interleaving planning and execution for autonomous robots (Boston: Kluwer, 1997).
  3. [3] W.E. Snyder & H.R. Qi, Machine vision (Cambridge: Cambridge University Press, 2004).
  4. [4] M. Adams, S. Zhang, & L. Xie, Particle filter based outdoor robot localization using natural features extracted from laser scanners, Proc. IEEE Int. Conf. on Robotics and Automation, Vol. 2, New Orleans, LA, April 2004, 1493–1498. 163 doi:10.1109/ROBOT.2004.1308035
  5. [5] K.L. Moore & N.S. Flann, A six-wheeled omnidirectional autonomous mobile robot, IEEE Control Systems Magazine, 20 (6), 2000, 53–66. doi:10.1109/37.887449
  6. [6] K. Moore, N. Flann, S. Rich, M. Frandsen, Y. Chung, J. Martin, M. Davidson, R. Maxfield, & C. Wood, Implementation of an omnidirectional robotic inspection system (ODIS), Proc. SPIE Conf. on Robotic and Semi-Robotic Ground Vehicle Tech., Orlando, FL, May 2001, 200–210. doi:10.1117/12.439979
  7. [7] M. Davidson & V. Bahl, The scalar -controller: A spatial path tracking approach for ODV, Ackerman, and differentiallysteered autonomous wheeled mobile robots, Proc. IEEE Int. Conf. on Robotics and Automation, Seoul, Korea, 2001, 175– 180.
  8. [8] P.V.C. Hough, Methods and means for recognizing complex patterns, U.S. Patent No. 3069654, 1962.
  9. [9] J. Illingworth & J. Kittler, Survey: A survey of the Hough Transform, Journal on Computer Vision, Graphics, and Image Processing, 44, October 1998, 87–116.
  10. [10] T.J. Atherton & D.J. Kerbyson, Size invariant circle detection, Image and Vision Compution, 17, September 1999, 795–803. doi:10.1016/S0262-8856(98)00160-7
  11. [11] N. Guil & E.L. Zapata, Lower order circle and ellipse Hough Transform, Journal Pattern Recognition, 30 (10), 1997, 1729– 1744. doi:10.1016/S0031-3203(96)00191-4
  12. [12] N. Guil & E.L. Zapata, A new invariant scheme for the generalized Hough transform, IASTED Int. Conf. on Signal and Image Processing, Orlando, FL, November 1996, 88–91.
  13. [13] N. Kiryati, Y. Eldar, & A.M. Bruckstein, A probabilistic Hough transform, 24 (4), 1991, 303–316.
  14. [14] J. Matas, C. Galambos, & J. Kittler, Progressive probabilistic Hough Transform, Proc. British Machine Vision Conf., London, September 1998.
  15. [15] B. Giesler, R. Graf, R. Dillmann, & C.F.R. Weiman, Fast mapping using the Log-Hough transformation, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Vol. 3, 1998, 1702–1707. doi:10.1109/IROS.1998.724843
  16. [16] L. Xu & E. Oja, Randomized Hough transform (RHT): Basic mechanisms, algorithms, and computational complexities, Journal on Computer Vision, Graphics, and Image Processing, 2, March 1993, 672–675.
  17. [17] H. Kalviainen & P. Hirvonen, Connective randomized Hough transform (CRHT), 1995, 15–26.
  18. [18] R.S. Stephens, Parallel Hough transform algorithm performance, 1991, 55–59.
  19. [19] D.L. Page, Part decomposition of 3D surfaces, doctoral diss., University of Tennessee, Knoxville, 2003.
  20. [20] Z. Song, Some localization strategies for mobile robots, master’s thesis, Utah State University, 2003.
  21. [21] Z. Song, K. Moore, Y.Q. Chen, & V. Bahl, Two-dimensional laser servoing for precision motion control of an ODV robotic license plate recognition system, Proc. Int. Society of Optical Engineering, Vol. 5083, San Diego, CA, April 2003, 396–407.

Important Links:

Go Back