A NOVEL HYBRID NAVIGATION SCHEME FOR RECONFIGURABLE MULTI-AGENT TEAMS

J. Ren, K.A. McIsaac, and R.V. Patel

References

  1. [1] H.G. Tanner, G.J. Pappas, & V. Kumar, Leader-to-formation stability, IEEE Trans. on Robotics and Automation, 20(3), 2004, 443–455. doi:10.1109/TRA.2004.825275
  2. [2] J. King, R.K. Pretty, & R.G. Gosine, Coordinated execution of tasks in a multiagent environment, IEEE Trans. on Systems, Man and Cybernetics, 33(5), 2003, 615–619. doi:10.1109/TSMCA.2003.817387
  3. [3] A. Davids, Urban search and rescue robots: From tragedy to technology, IEEE Trans. on Intelligent Systems, 17(2), 2002, 81–83. doi:10.1109/MIS.2002.999224
  4. [4] L.E. Parker, ALLIANCE: An architecture for fault-tolerant multirobot cooperation, IEEE Trans. on Robotics and Automation, 14(2), 1998, 220–240. doi:10.1109/70.681242
  5. [5] V. Kumar & M.K. Habib, Cognitive maps in swarm robots for the mine detection application, Proc. IEEE Conf. on Systems, Man and Cybernetics, Asian Liaison, Amsterdam, 2003, 3364– 3369. doi:10.1109/ICSMC.2003.1244409
  6. [6] S. Berman, Y. Edan, & M. Jamshidi, Navigation of decentralized autonomous automatic guided vehicles in material handling, IEEE Trans. on Robotics and Automation, 19(4), 2003, 743–749. doi:10.1109/TRA.2003.814513
  7. [7] T. Fong, C. Thorpe, & C. Baur, Multi-robot remote driving with collaborative control, IEEE Trans. on Industrial Electronics, 50(4), 2003, 699–704. doi:10.1109/TIE.2003.814768
  8. [8] A.A. Makarenko, T. Kaupp, & H.F. Durrant-Whyte, Scalable human-robot interactions in active sensor networks, IEEE Pervasive Computing, 2(4), 2003, 63–71. doi:10.1109/MPRV.2003.1251170
  9. [9] Y. Zhang, M. Schervish, & H. Choset, Probabilistic hierarchical spatial model for mine locations and its application in robotic landmine search, Proc. IEEE Conf. on Intelligent Robots and System, Lausanne, 2002, 681–689. doi:10.1109/IRDS.2002.1041470
  10. [10] T. Balch & R.C. Arkin, Behavior-based formation control for multi-robot teams, IEEE Trans. on Robotics and Automation, 14(6), 1998, 926–939. doi:10.1109/70.736776
  11. [11] O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots, International Journal of Robotics Research, 5(1), 1986, 90–98. doi:10.1177/027836498600500106
  12. [12] Y. Koren, Potential field methods and their inherent limitations for mobile robot navigation, Proc. IEEE Int. Conf. Robotics and Automation, Sacramento, CA, 1991, 1398–1404. doi:10.1109/ROBOT.1991.131810
  13. [13] S.S. Ge & Y.J. Cui, New potential functions for mobile robot path planning, IEEE Trans. on Robotics and Automation, 16(5), 2000, 615–620. doi:10.1109/70.880813
  14. [14] H. Ghenniwa & M. Kamel, Interaction devices for coordinating cooperative distributed systems, Automation and Soft Computing, 6(2), 2000, 173–184.
  15. [15] M.S. Branicky, V.S. Borkar, & S.K. Mitter, A unified framework for hybrid control, Proc. IEEE Conf. on Decision and Control, Lake Buena Vista, FL, 1994, 4228–4234. doi:10.1109/CDC.1994.411615
  16. [16] J. Ren & K.A. McIsaac, A hybrid-systems approach to potential field navigation for a multi-robot team, IEEE Int. Conf. on Robotics and Automation, Taipei, Taiwan, 2003, 3875–3880. doi:10.1109/ROBOT.2003.1242191

Important Links:

Go Back