EFFICIENT IMPLEMENTATION OF SEVERAL MULTILEVEL THRESHOLDING ALGORITHMS USING A COMBINATORIAL SCHEME

B.-F. Wu, Y.-L. Chen, and C.-C. Chiu

References

  1. [1] N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans. on Systems, Man and Cybernetics,SMC-9, 1979, 62–66.
  2. [2] P.K. Sahoo, S. Soltani, A.K.C. Wong, & Y.C. Chen, A surveyof thresholding techniques, Computer Vision, Graphics andImage Processing, 41, 1988, 233–260. doi:10.1016/0734-189X(88)90022-9
  3. [3] S.U. Lee & S.Y. Chung, A comparative performance studyof several global thresholding techniques for segmentation,Computer Vision, Graphics and Image Processing, 52, 1990,171–190. doi:10.1016/0734-189X(90)90053-X
  4. [4] O.D. Trier & A.K. Jain, Goal-directed evaluation of binarizationmethods, IEEE Trans. on Pattern Analysis and MachineIntelligence, 17, 1995, 1191–1201. doi:10.1109/34.476511
  5. [5] S.S. Reddi, S.F. Rudin, & H.R. Keshavan, An optimal multiplethreshold scheme for image segmentation, IEEE Trans. onSystems, Man and Cybernetics, SMC-14, 1984, 661–665.
  6. [6] M. Cheriet, J.N. Said, & C.Y. Suen, A recursive thresholdingtechnique for image segmentation, IEEE Trans. on ImageProcessing, 7(6), 1998, 918–921. doi:10.1109/83.679444
  7. [7] J. Kittler & J. Illingworth, Minimum error thresholding, Pattern Recognition, 19, 1986, 41–47. doi:10.1016/0031-3203(86)90030-0
  8. [8] J. Kapur, P.K. Sahoo, & A.K.C. Wong, A new method for gray-level picture thresholding using the entropy of the histogram,Computer Vision Graphics and Image Processing, 29, 1985,273–285. doi:10.1016/0734-189X(85)90125-2
  9. [9] J.C. Yen, F.J. Chang, & S. Chang, A new criterion for automaticmultilevel thresholding, IEEE Trans. on Image Processing,4(3), 1995, 370–378. doi:10.1109/83.366472
  10. [10] P. Sahoo, C. Wilkins, & J. Yeager, Threshold selection usingRenyi’s entropy, Pattern Recognition, 30(1), 1997, 71–84. doi:10.1016/S0031-3203(96)00065-9
  11. [11] L.K. Huang & M.J. Wang, Image thresholding by minimizingthe measure of fuzziness, Pattern Recognition, 28, 1995, 41–51. doi:10.1016/0031-3203(94)E0043-K
  12. [12] H.D. Cheng, J.R. Chen, & J. Li, Threshold selection basedon fuzzy c-partition entropy approach, Pattern Recognition,31(7), 1998, 857–870. doi:10.1016/S0031-3203(97)00113-1
  13. [13] H.D. Cheng, Y.H. Chen, & Y. Sun, A novel fuzzy entropyapproach to image enhancement and thresholding, Signal Processing, 75, 1999, 277–301. doi:10.1016/S0165-1684(98)00239-4
  14. [14] H. Yan, Unified formulation of a class of optimal imagethresholding techniques, Pattern Recognition, 29(12), 1996,2025–2032. doi:10.1016/S0031-3203(96)00050-7
  15. [15] M. Fleury, L. Hayat, & A.F. Clark, Parallel entropic auto-thresholding, Image and Vision Computing, 14, 1996, 247–263. doi:10.1016/0262-8856(95)01049-1
  16. [16] J.H. Conway & R.K. Guy, Choice numbers, in The book ofnumbers (New York: Springer-Verlag, 1996), 67–68.
  17. [17] P.J. Chase, Algorithm 382: Combinations of M out of Nobjects [G6], Comm. Association for Computing Machinery,13(6), 1970, 368.
  18. [18] M.D. Levine & A.M. Nazif, Dynamic measurement of computergenerated image segmentation, IEEE Trans. Pattern Analysisand Machine Intelligence, 7, 1985, 155–164.

Important Links:

Go Back