A SHORT SURVEY ON QUANTUM COMPUTERS

Y. Kanamori, S.-M. Yoo, W.D. Pan, and F.T. Sheldon

References

  1. [1] C.P. Williams & S.H. Clearwater, Exploration in quantumcomputing (New York: Springer-Verlag, 1997).
  2. [2] P.W. Shor, Algorithm for quantum computation: Discretelogarithm and factoring, Proc. 35th IEEE Annual Symp. onFoundations of Computer Science, Santa Fe, NM, November1994, 24–134.
  3. [3] M. Oskin, F.T. Chong, & I. Chuang, A practical architecturefor reliable quantum computers, IEEE Computer, January2002, 79–87. doi:10.1109/2.976922
  4. [4] B. Preneel (Ed.), Factorization of a 512-bit RSA modules, Lecture Notes in Computer Science, Vol. 1807 (Berlin: Springer-Verlag, 2000).
  5. [5] L.K. Grover, A fast quantum mechanical algorithm for databasesearch, Proc. STOC, Philadelphia, 1996, 212–219.
  6. [6] D.R. Simon, On the power of quantum computation, Proc. 35thAnnual Symp. on Foundations of Computer Science, Sante Fe,NM, 1994, 116–123. doi:10.1109/SFCS.1994.365701
  7. [7] T. Nishino, Introduction to quantum computer (Tokyo: TokyoDenki University Press, 1997) (in Japanese).
  8. [8] M.A. Nielsen & I.L. Chuang, Quantum computation and quantum information (Cambridge: Cambridge University Press,2000).
  9. [9] D.P. DiVincenzo, The physical implementation of quantumcomputation, Fortschritte der Physik, 48(9–11), 2000, 771–783. doi:10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
  10. [10] D.P. DiVincenzo, Two-bit gates are universal for quantumcomputation, Physical Review A, 51, 1995, 1015–1022. doi:10.1103/PhysRevA.51.1015
  11. [11] IBM Research News, IBM’s test-tube quantum computermakes history: First demonstration of Shor’s historic factoring algorithm, http://www.research.ibm.com/resources/news/20011219_quantum.shtml.
  12. [12] J.I. Cirac & P. Zoller, Quantum computations with cold trappedIons, Physical Review Letters, 74, 1995, 4091. doi:10.1103/PhysRevLett.74.4091
  13. [13] C. Monroe, D.M. Meekhof, B.E. King, W.M. Itano, &D.J. Wineland, Demonstration of a fundamental quantum logicgate, Physical Review Letters, 75, 1995, 4714. doi:10.1103/PhysRevLett.75.4714
  14. [14] D. Kielpinski, C. Monroe, & D.J. Wineland, Architecture fora large-scale ion-trap quantum computer, Nature, 417, 2002,709–711. doi:10.1038/nature00784
  15. [15] Q.A. Turchette, C.J. Hood, W. Lange, H. Mabuchi, &H.J. Kimble, Measurement of conditional phase shifts forquantum logic, Physical Review Letters, 75, 1995, 4710–4713. doi:10.1103/PhysRevLett.75.4710
  16. [16] E. Knill, R. Laflamme, & G. J. Milburn, A scheme for efficientquantum computation with linear optics, Nature, 409, 2001,46–52. doi:10.1038/35051009
  17. [17] T.C. Ralph, A.G. White, & G.J. Milburn, Simple scheme forefficient linear optics quantum gates, Physical Review A, 65,2002, 012314-1–012314-6. doi:10.1103/PhysRevA.65.012314
  18. [18] D. Loss & D.P. DiVincenzo, Quantum computation withquantum dots, Physical Review A, 57, 1998, 120–126. doi:10.1103/PhysRevA.57.120
  19. [19] M.S. Sherwin, A. Imamoglu, & T. Montroy, Quantum computation with quantum dots and terahertz cavity quantumelectrodynamics, Physical Review A, 60, 1999, 3508–3514. doi:10.1103/PhysRevA.60.3508
  20. [20] Y. Makhlin, G. Schön, & A. Shnirman, Quantum-state engineering with Josephson-junction devices, Reviews of ModernPhysics, 73, 2001, 357–400. doi:10.1103/RevModPhys.73.357
  21. [21] T. Yamamoto, Y.A. Pashkin, O. Astafiev, Y. Nakamura, &J.S. Tsai, Demonstration of conditional gate operation usingsuperconducting charge qubits, Nature, 425, 2003, 941–944. doi:10.1038/nature02015
  22. [22] P.W. Shor, Scheme for reducing decoherence in quantumcomputer memory, Physical Review A, 52, 1995, R2493–R2496. doi:10.1103/PhysRevA.52.R2493
  23. [23] A.R. Calderbank & P.W. Shor, Good quantum error-correctingcodes exist, Physical Review A, 54, 1996, 1098–1105. doi:10.1103/PhysRevA.54.1098
  24. [24] A. Ekert, & C. Macchiavello, Quantum error correction forcommunication, Physical Review Letters, 77, 1996, 2585–2588. doi:10.1103/PhysRevLett.77.2585
  25. [25] A.M. Steane, Error correcting codes in quantum theory, Physical Review Letters, 77, 1996, 793–797. doi:10.1103/PhysRevLett.77.793
  26. [26] W.K. Wootters & W.H. Zurek, A single quantum cannot becloned, Nature, 299, 1982, 802–803. doi:10.1038/299802a0
  27. [27] P.W. Shor, Fault-tolerant quantum computation, Proc. 37thIEEE Annual Symp. on Foundations of Computer Science,Burlington, VT, 1996, 56–65.
  28. [28] J. Preskill, Reliable quantum computers, Proc. of the RoyalSociety of London, A454, 1998, 385–410. doi:10.1098/rspa.1998.0167
  29. [29] A.M. Steane, Efficient fault-tolerant quantum computing, Na-ture, 399, 1999, 124–126. doi:10.1038/20127
  30. [30] D. Gottesman, Fault-tolerant quantum computation with localgates, Journal of Modern Optics, 47, 2000, 333–345. doi:10.1080/095003400148240
  31. [31] E. Knill & R. Laflamme, Concatenated quantum codes,quantph/9608012, 1996.
  32. [32] P.O. Boykin, C.P. Roychowdhury, T. Mor, & F. Vatan, Faulttolerant computation on ensemble quantum computers, Int.Conf. on Dependable Systems and Networks, Florence, Italy,2004, 157–166.
  33. [33] E. Knill, R. Laflamme, & W. Zurek, Accuracy threshold forquantum computation, quant-ph/9610011, 1996.
  34. [34] E. Knill, Quantum computing with realistically noisy devices,Nature, 434, 2005, 39–44. doi:10.1038/nature03350
  35. [35] J. Wallace, Quantum computer simulators, International Journal of Computing Anticipatory System, 10, 2001, 230–245.
  36. [36] H. De Raedt & K. Michielsen, Computational methods forsimulating quantum computers, quant-ph/0406210, 2004.
  37. [37] World’s first universal quantum computation simulator,Quantum computer simulator, SENKO Corporation, http://www.senko-corp.co.jp/qcs/index.html.
  38. [38] H. De Raedt, A.H. Hams, K. Michielsen, & K. De Raedt, Quan-tum computer emulator, Computer Physics Communications,132(1–2), 2000, 1–20. doi:10.1016/S0010-4655(00)00132-6
  39. [39] K. Michielsen, H. De Raedt, & K. De Raedt, A simulatorfor quantum computer hardware, Nanotechnology, 13, 2002,23–28.232 doi:10.1088/0957-4484/13/1/305
  40. [40] D.J. Griffiths, Introduction to quantum mechanics (EnglewoodCliffs, NJ: Prentice-Hall, 1995), 1–2.
  41. [41] K.M. Obenland & A.M. Despain, A parallel quantumcomputer simulator, High Performance Computing, 1998,quantph/9804039.
  42. [42] J. Niwa, K. Matsumoto, & H. Imai, General-purpose parallelsimulator for quantum computing, Physical Review A, 66,2002, 062317-1–062317-11. doi:10.1103/PhysRevA.66.062317
  43. [43] J.W. Sanders & P. Zuliani, Quantum programming, Mathematics of program construction, Lecture Notes in ComputerScience, 1837 (Heidelberg: Springer Verlag, 2000), 80–99. doi:10.1007/10722010_6
  44. [44] B. Ömer, Classical concepts in quantum programming, Quantum Structures, 2002, http://arxiv.org/abs/quant-ph/0211100.
  45. [45] P. Selinger, Towards a quantum programming language, Mathematical Structures in Computer Science, 14, 2003, 527. doi:10.1017/S0960129504004256
  46. [46] Quantum computation roadmap, http://qist.lanl.gov/qcomp_map.shtml.

Important Links:

Go Back