STRUCTURAL DESCRIPTION TO RECOGNIZING HAND-PRINTED ARABIC CHARACTERS USING DECISION TREE LEARNING TECHNIQUES

A. Amin and N. Al-Darwish

References

  1. [1] V. Govindan & A. Shivaprasad, Character recognition—Areview, Pattern Recognition, 23(7), 1990, 671–683. doi:10.1016/0031-3203(90)90091-X
  2. [2] S. Mori, C.Y. Suen, & K. Yamamoto, Historical review ofOCR research and development, Proc. IEEE, 80(7), 1992,1029–1058. doi:10.1109/5.156468
  3. [3] C.Y. Suen, R. Shingal, & C.C. Kwan, Dispersion factor:A quantitative measurement of the quality of handprintedcharacters, Int. Conf. of Cybernetics and Society, 1977, 681–685.
  4. [4] A. Amin, Arabic character recognition, in P.S.P. Wang andH. Bunke (Eds.), Handbook on optical character recognitionand document image analysis (Singapore: World ScientificPublishing, 1997), 397–420.
  5. [5] A. Amin, Off_line Arabic characters recognition: The state ofthe art, Pattern Recognition, 31 (5), 1998, 517–530. doi:10.1016/S0031-3203(97)00084-8
  6. [6] M. Khemakhem & M.C. Fehri, Recognition of printed Ara-bic characters by comparison dynamique, Proc. 1st KuwaitComputer Conf., Kuwait, 1988, 448–462.
  7. [7] R. Schwartz, C. LaPre, J. Makhoul, C. Raphael, & Y. Zhao,Language independent OCR using a continuous speech recog-nition system, 13th Int. Conf. Pattern Recognition, Vienna,Austria, 1996, 99–103. doi:10.1109/ICPR.1996.546802
  8. [8] H. Almuallim & S. Yamaguchi, A method of recognition ofArabic cursive handwriting, IEEE Trans. on Pattern Analysisand Machine Intelligence, 9 (5), 1987, 715–722.
  9. [9] A. Amin & J.F. Mari, Machine recognition and correction ofprinted Arabic text, IEEE Trans. on Man and Cybernetics,9(1), 1989, 1300–1306.133 doi:10.1109/21.44052
  10. [10] B. Al-Badr & R. Haralick, Segmentation-free word recognitionwith application to Arabic, 3rd Int. Conf. Document Analysisand Recognition, Montreal, 1995, 355–359. doi:10.1109/ICDAR.1995.599012
  11. [11] H.B. Al-Sadoun & A. Amin, A new structural techniquefor recognizing printed Arabic text, International Journal ofPattern Recognition and Artificial Intelligence, 9(1), 1995,101–125. doi:10.1142/S0218001495000067
  12. [12] J.R. Quinlan, C4.5: Programs for machine learning (SanMateo, CA: Morgan Kauffman, 1993).
  13. [13] A. Rosenfeld, A characterization of parallel thinning algo-rithms, Information Control, 29, 1975, 286–291. doi:10.1016/S0019-9958(75)90448-9
  14. [14] C. Arcelli, L.P. Cordella, & S. Levialdi, From local maximato connected skeletons, IEEE Trans. on Pattern Analysis andMachine Intelligence, 3, 1981, 134–143.
  15. [15] Z. Guo & R.W. Hall, Parallel thinning with two sub-iterationalgorithm, Communication on ACM, 32(3), 1989, 359–373. doi:10.1145/62065.62074
  16. [16] L. Lam, S.W. Lee, & C.Y. Suen, Thinning methodologies—Acomprehensive survey, IEEE Trans. on Pattern Analysis andMachine Intelligence, 14(9), 1992, 869–885. doi:10.1109/34.161346
  17. [17] B.K. Jang & R.T. Chin, One-pass parallel thinning: Anal-ysis, properties, and quantitative evaluation, IEEE Trans.on Pattern Analysis and Machine Intelligence, 14(11), 1992,1129–1140. doi:10.1109/34.166630
  18. [18] A. Amin, Structural description using decision tree learningtechniques, 16th Int. Conf. on Pattern Recognition, Quebec-City, Canada, 2002, 76–79.
  19. [19] H. Freeman, On the encoding of arbitrary geometric configura-tions, IEEE Trans. Electronic Computers, 10, 1961, 260–268.
  20. [20] L. Fu, Neural networks in computer intelligence (Singapore:McGraw-Hill, 1994).
  21. [21] M. Stone, Cross-validatory choice and assessment of statisticalpredictions, Journal of the Royal Statistical Society, 36 (1),1974, 111–147.
  22. [22] S.M. Weiss & G.E. Kulikowski, Computer systems that learn,(San Mateo, CA: Morgan Kauffman, 1991).

Important Links:

Go Back