NEUROFUZZY NETWORK-BASED ADAPTIVE NONLINEAR PI CONTROLLERS

H.T. Mok, C.W. Chan, and W.K. Yeung

References

  1. [1] W.K. Ho, C.C. Hang, & L.S. Cao, Tuning of PID controllersbased on gain and phase margin specifications, Automatica,31(3), 1995, 497–502. doi:10.1016/0005-1098(94)00130-B
  2. [2] W.K. Ho, C.C. Hang, & J.H. Zhou, Performance and gain andphase margins of well-know PI tuning formulas, IEEE Trans.on Control Systems Technology, 3(2), 1995, 245–248. doi:10.1109/87.388135
  3. [3] F. Cameron & D.E. Seborg, A self-tuning controller with aPID structure, International Journal of Control, 38(2), 1983,401–417. doi:10.1080/00207178308933083
  4. [4] P.J. Gawthrop, Self-tuning PID controllers: Algorithms andimplementation, IEEE Trans. on Automatic Control, 31(3),1986, 201–209. doi:10.1109/TAC.1986.1104241
  5. [5] R. Ortega & R. Kelly, PID self-tuners: Some theoretical andpractical aspects, IEEE Trans. on Industrial Electronics, 31(4),1984, 332–338.223 doi:10.1109/TIE.1984.350087
  6. [6] S. Bittanti & L. Piroddi, GMV technique for nonlinear controlwith neural networks, IEE Proc. D., Control Theory andApplications, 141(2), 1994, 57–69. doi:10.1049/ip-cta:19949877
  7. [7] J. Zhang & A.J. Morris, Fuzzy neural networks for nonlinear systems modelling, IEE Proc. D., Control Theory andApplications, 142(6), 1995, 551–561. doi:10.1049/ip-cta:19952255
  8. [8] T. Zhang, S.S. Ge, & C.C. Hang, Neural-based direct adaptivecontrol for a class of general nonlinear systems, InternationalJournal of Systems Science, 28(10), 1997, 1011–1020. doi:10.1080/00207729708929464
  9. [9] C.H. Lee & C.C. Hang, Calculation of PID controller parameters by using a fuzzy neural network, ISA Trans., 42(3), 2003,391–400. doi:10.1016/S0019-0578(07)60142-6
  10. [10] G.J. Wang, C.T. Fong, & K.J. Chang, Neural-network basedself-tuning PI controller for precise motion control of PMACmotors, IEEE Trans. on Industrial Electronics, 48(2), 2001,408–415. doi:10.1109/41.915420
  11. [11] J. Chen & T.H. Huang, Applying neural networks to on-lineupdated PID controllers for nonlinear process control, Journalof Process Control, 14, 2004, 211–230. doi:10.1016/S0959-1524(03)00039-8
  12. [12] J.C. Shen, Fuzzy neural networks for tuning PID controller forplants with underdamped responses, IEEE Trans. on FuzzySystems, 9(2), 2001, 333–342. doi:10.1109/91.919254
  13. [13] K.S. Narendra & J. Balakrishnan, Adaptive control usingmultiple models, IEEE Trans. on Automatic Control, 42(2),1997, 171–187. doi:10.1109/9.554398
  14. [14] D.A. Lawrence & W.J. Rugh, Gain scheduling dynamic linearcontrollers for a nonlinear plant, Automatica, 31(3), 1995,381–390. doi:10.1016/0005-1098(94)00113-W
  15. [15] M. Brown & C.J. Harris, Neurofuzzy adaptive modelling andcontrol (New York: Prentice Hall, 1994).
  16. [16] C.W. Chan, X.J. Liu, & W.K. Yeung, Neurofuzzy networkbased self-tuning control with offset eliminating, InternationalJournal of Systems Science, 34(2), 2003, 111–122. doi:10.1080/0020772031000115551
  17. [17] X.J. Liu, F. Lara-Rosano, & C.W. Chan, Neurofuzzy network based adaptive integral control, Control and IntelligentSystems, 31(3), 2003, 173–180.
  18. [18] T.A. Johansen & B.A. Foss, Constructing NARMAX modelsusing ARMAX models, International Journal of Control, 58(5),1993, 1125–1153. doi:10.1080/00207179308923046
  19. [19] R. Murray-Smith & K.J. Hurt, Local model architectures fornonlinear modelling and control, in K.J. Hunt, G.R. Irwin, &K. Warwick (Eds.), Neural network engineering in dynamiccontrol systems (Berlin: Springer-Verlag, 1995), 61–82.
  20. [20] T. Takagi & M. Sugeno, Fuzzy identification of systems andits applications to modelling and control, IEEE Trans. onSystems, Man and Cybernetics, 15(1), 1985, 116–132.
  21. [21] P.S. Tuffs & D.W. Clarke, Self-tuning control of offset: A unifiedapproach, IEE Proc. D., Control Theory and Applications,132(3), 1985, 100–110.
  22. [22] X. Hong & C.J. Harris, A neurofuzzy network knowledgeextraction and extended Gram-Schmidt algorithm for modelsubspace decomposition, IEEE Trans. on Fuzzy Systems, 11(4),2003, 528–541. doi:10.1109/TFUZZ.2003.814842
  23. [23] L. Ljung & T. Söderström, Theory and practice of recursiveidentification (Cambridge, MA: MIT Press, 1983).
  24. [24] C.W. Chan, K.C. Cheung, & W.K. Yeung, A computation-efficient on-line training algorithm for neurofuzzy networks,International Journal of Systems Science, 31(3), 2000, 297–306. doi:10.1080/002077200291145
  25. [25] J.D. Morningred, B.E. Paden, D.E. Seborg, & D.A. Mellichamp, An adaptive nonlinear predictive controller, ChemicalEngineering Science, 47(4), 1992, 755–762. doi:10.1016/0009-2509(92)80266-F

Important Links:

Go Back