HYBRID LEARNING ALGORITHM FOR INTERVAL TYPE-2 FUZZY LOGIC SYSTEMS

G.M. Méndez and L.A. Leduc

References

  1. [1] G.M. Mendez, A. Cavazos, L. Leduc, & R. Soto, Hot strip milltemperature prediction using hybrid learning interval singletontype-2 FLS, Proc. of the IASTED Int. Conf. on Modeling andSimulation, Palm Springs, USA, February 2003, 380–385.
  2. [2] G.M. Mendez, A. Cavazos, L. Leduc, & R. Soto, Modelling ofa hot strip mill temperature using hybrid learning for intervaltype-1 and type-2 non-Singleton type-2 FLS, IASTED Intl.Conf. on Artificial Intelligence and Appl., Benalmadena, Spain,September 2003, 529–533.
  3. [3] D.Y. Lee & H.S. Cho, A neural network approach to the controlof the plate width in hot plate mills, IEEE Int. Joint Conf.on Neural Networks, 5, 1999, 3391–3396.
  4. [4] J.M. Mendel, Uncertain rule-based fuzzy logic systems: Introduction and new directions (Upper Saddler River, NJ:Prentice-Hall, 2001).
  5. [5] B.N. Taylor & C.E. Kuyatt, Guidelines for evaluating and expressing the uncertainty of NIST measurement results (Washington, US: Government Printing Office, 1994).
  6. [6] L.-X. Wang, Fuzzy Systems as Nonlinear Dynamic SystemIdentifiers, Proc. of the 31st Conf. on Decision and Control,Tucson Arizona, USA, December 1992, 897–902. doi:10.1109/CDC.1992.371595
  7. [7] L.-X. Wang, A course in fuzzy systems and control (UpperSaddle River, NJ: Prentice Hall, 1997).
  8. [8] L.-X. Wang, Fuzzy systems as nonlinear dynamic systemidentifiers, Proc. of the 31st Conf. on Decision and Control,Tucson, Arizona, 1992, 897–902. doi:10.1109/CDC.1992.371595
  9. [9] L.-X. Wang & J.M. Mendel, Back-propagation fuzzy systemsas nonlinear dynamic system identifiers, Proc. of the IEEEConf. on Fuzzy Systems, San Diego, CA, 1992, 1409–1418. doi:10.1109/FUZZY.1992.258711
  10. [10] J.-S.R. Jang, C.-T. Sun, & E. Mizutani, Neuro-fuzzy and softcomputing: A computational approach to learning and machineintelligence (Upper Saddle River, NJ: Prentice-Hall, 1997).
  11. [11] V. Peterka, A square-root filter for real-time multivariableregression, Kybernetika, 11, 1975, 53–67.
  12. [12] A. Aguado, Temas de identificación y control adaptable (LaHabana, Cuba: ICIMAF, 2000).
  13. [13] GE Drive Systems, Instructions Finish Mill Setup User’s Guide(Salem, VA: GE Drive Systems, 1993).
  14. [14] Q. Liang & J.M. Mendel, Interval type-2 fuzzy logic systems:Theory and design, IEEE Trans. on Fuzzy Systems, 8, October2000, 535–550. doi:10.1109/91.873577
  15. [15] R.I. John, Embedded interval valued type-2 fuzzy sets, Proc. ofFUZZ-IEEE, Honolulu, Hawaii, May 12–17, 2002, 1316–1321.
  16. [16] J.M. Mendel & R.I. John, Type-2 fuzzy sets made simple,IEEE Trans. on Fuzzy Systems, 10, April 2002, 117–127. doi:10.1109/91.995115
  17. [17] J.M. Mendel, On the importance of interval sets in type-2fuzzy logic systems, Proc. of Joint 9th IFSA World Congressand 20th NAFIPS Int. Conf., Vancouver, British Columbia,Canada, July 25–28, 2001.
  18. [18] J.B. Turksen, Interval-valued fuzzy uncertainty, Proc. of 5thIFSA World Congress, Seoul, Korea, July 1993, 35–38.
  19. [19] J.B. Turksen, Interval valued fuzzy sets and fuzzy connectives,Interval Computations, 4, 1993, 125–142.
  20. [20] J.-S.R. Jang & C.-T. Sun, Neuro-fuzzy modelling and control,The Proc. of the IEEE, 3, March 1995, 378–406. doi:10.1109/5.364486

Important Links:

Go Back