MULTI-MODEL MODELLING AND PREDICTIVE CONTROL BASED ON LOCAL MODEL NETWORKS

Z.K. Xue and S.Y. Li

References

  1. [1] T.A. Johansen & B.A. Foss, Multiple model approaches tomodelling and control (Editorial), International Journal ofControl, 72(7/8), 1999, 575. doi:10.1080/002071799220777
  2. [2] A. Banerjee, Y. Arkun, R. Pearson, & B. Ogunnaike, H∞control using multiple linear models, in R. Murray-Smith &T.A. Johansen (Eds.), Multiple model approaches to modellingand control (London: Taylor and Francis, 1997).
  3. [3] K.S. Narendra, J. Balakrishnan, & M.K. Ciliz, Adaptation andlearning using multiple models switching and tuning, IEEEControl System Magazine, 15(3), 1995, 37–51. doi:10.1109/37.387616
  4. [4] K. Schoot & B.W. Bequette, Control of chemical reactors usingmultiple-model adaptive control, IFAC DWORD’95, Helsinger,Denmark, 1995, 345–350.
  5. [5] N.M. Lakshmanan & Y. Arkun, Estimation and model predic-tive control of non-linear batch processed using linear parame-ter varying models, International Journal of Control, 72(7/8),1999, 659–675. doi:10.1080/002071799220849
  6. [6] H. Collee, K.J. Hunt, N.D. Donaldson, & J.C. Jarvis, Modellingof electrically stimulated muscle, in R. Murray-Smith & T.A.Johansen (Eds.), Multiple model approaches to modelling andcontrol (London: Taylor and Francis, 1997).
  7. [7] D.W. Clarke, C. Mohtadi, & P.S. Tuffs, Generalized predictivecontrol, Automatica, 23(2), 1987, 137–162. doi:10.1016/0005-1098(87)90087-2
  8. [8] T.A. Runkler & J.C. Bezdek, Alternating cluster estimation:A new tool for clustering and function approximation, IEEETrans. on Fuzzy Systems, 7(4), 1999, 377–393. doi:10.1109/91.784198
  9. [9] J. Moody & C.J. Darken, Fast learning in networks of locally-tuned processing units, Neural Computation, 1(1), 1989, 281–294. doi:10.1162/neco.1989.1.2.281
  10. [10] R. Babuska & H. Verbruggen, Neuro-fuzzy methods for non-linear system identification, Annual Reviews in Control, 27(1),2003, 73–85. doi:10.1016/S1367-5788(03)00009-9
  11. [11] R. Murray-Smith & T.A. Johansen, Local learning in localmodel networks, in R. Murray-Smith & T.A. Johansen (Eds.),Multiple model approaches to modelling and control (London:Taylor and Francis, 1997).
  12. [12] H.O. Wang, K. Tanaka, & M.F. Griffin, An approach to fuzzycontrol of nonlinear systems: Stability and design issues, IEEETrans. on Fuzzy Systems, 4(1), 1996, 14–23. doi:10.1109/91.481841
  13. [13] K. Tanaka & M. Sugeno, Stability analysis and design of fuzzycontrol systems, Fuzzy Sets and Systems, 45(2), 1992, 135–156. doi:10.1016/0165-0114(92)90113-I
  14. [14] R.R. Rao, B. Aufderheide, & B.W. Bequette, Experimentalstudies on multiple-model predictive control for automated reg-ulation of hemodynamic variables, IEEE Trans. on BiomedicalEngineering, 50(3), 2003, 277–288. doi:10.1109/TBME.2003.808813
  15. [15] D. Dougherty & D. Cooper, A practical multiple model adaptivestrategy for multivariable model predictive control, ControlEngineering Practice, 11(6), 2003, 649–664. doi:10.1016/S0967-0661(02)00170-3
  16. [16] J.H. Nie, A.P. Loh, & C.C. Hang, Modelling pH neutraliza-tion processes using fuzzy-neural approaches, Fuzzy Sets andSystems, 78(1), 1996, 5–22. doi:10.1016/0165-0114(95)00118-2
  17. [17] N. Li, S.Y. Li, & Y.G. Xi, Multi-model predictive control basedon the Takagi-Sugeno fuzzy models: A case study, InformationScience, 165(3/4), 2004, 247–263. doi:10.1016/j.ins.2003.10.011

Important Links:

Go Back