J. Zou and Y.P. Gupta
[1] J.D. Doyle, Guaranteed margins for LQG regulators, IEEETrans. Automatic Control, 23 (4), 1978, 756–757. doi:10.1109/TAC.1978.1101812 [2] H. Kwakernaak, Robust control and H∞-optimization: Tutorialpaper, Automatica, 29 (2), 1993, 255–273. doi:10.1016/0005-1098(93)90122-A [3] I. Yaesh & U. Shaked, Minimum H∞-norm regulation oflinear discrete-time systems and its relation to linear quadraticdiscrete games, IEEE Trans. Automatic Control, 35 (9), 1990,1061–1064. doi:10.1109/9.58538 [4] A. Cohen & U. Shaked, Linear discrete-time H∞-optimaltracking with preview, IEEE Trans. Automatic Control, 42 (2),1997, 270–276. doi:10.1109/9.554409 [5] T. Basar, A dynamic games approach to controller design:Disturbance rejection in discrete-time, IEEE Trans. AutomaticControl, 36 (8), 1991, 936–952. doi:10.1109/9.133187 [6] M. Green & D.J. Limebeer, Linear robust control (EnglewoodCliffs, NJ: Prentice Hall, 1995), 475–502. [7] J. Lee, W.H. Kwon, & J.H. Lee, Receding horizon H∞ trackingcontrol for time-varying discrete linear system, InternationalJournal of Control, 68 (2), 1997, 385–399. doi:10.1080/002071797223686 [8] S. Lall & K. Glover, A game-theoretic approach to movinghorizon control, in D. Clarke (Ed.), Advances in model-basedpredictive control (New York: Oxford University Press, 1994),131–144. [9] M.-A. Poubelle, I.R Peterson, M.R. Gevers, & R.R. Bitmead,A miscellany of results on an equation of Count J.F. Riccati,IEEE Trans. Automatic Control, 31, 1986, 651–654. doi:10.1109/TAC.1986.1104355 [10] M.-A. Poubelle, R.R. Bitmead, & M.R. Gevers, Fake alge-braic Riccati techniques and stability, IEEE Trans. AutomaticControl, 33 (12), 1988, 379–381. doi:10.1109/9.192194 [11] C.E. De Souza, On stabilizing properties of solutions of theRiccati difference equation, IEEE Trans. Automatic Control,34 (12), 1989, 1313–1316. doi:10.1109/9.40787 [12] S. Lall & K. Glover, Riccati differential inequalities: Subop-timal H∞ controllers for finite horizon time varying systems,Proc. 34th Conf. on Decision and Control, Los Angeles, 1995,955–956. doi:10.1109/CDC.1995.479110 [13] R.R. Bitmead, M.R. Gevers, I.R. Peterson, & R.J. Kaye,Monotonicity and stabilizability properties of solutions of theRiccati difference equation: Propositions, lemmas, theorems,fallacious, conjectures and counterexamples, System ControlLetters, 5, 1985, 309–315. doi:10.1016/0167-6911(85)90027-1 [14] B.D.O. Anderson & J.B. Moore, Optimal control: Linearquadratic methods (Englewood Cliffs, NJ: Prentice-Hall, 1990).
Important Links:
Go Back