Time-Optimal Elbow Robot Motion

G. Giese, R.W. Longman, and H.G. Bock

References

  1. [1] S.N. Osipov & A.M. Formalskiy, The problem of fastest ma-nipulator rotation, Prikladnaya Matematica i Meckhanica, 52(6), 1988.
  2. [2] Y. Chen & J. Huang, An improved computation of time-optimal control trajectory for robotic point-to-point motion,International Journal of Control, 65(5), 1996, 177–194. doi:10.1080/00207179608921692
  3. [3] S. Singh & M.C. Leu, Optimal trajectory generation for roboticmanipulators using dynamic programming, ASME Trans.,Journal of Dynamic Systems, Measurement and Control, 109,1987, 88–96.
  4. [4] J. Konzelmann, H.G. Bock, & R.W. Longman, Time optimaltrajectories of polar robot manipulators by direct methods,Modelling and Simulation, Instrument Society of America,1989, 20, 1933–1939.
  5. [5] J. Konzelmann, H.G. Bock, & R.W. Longman, Time optimaltrajectories of elbow robots by direct methods, Proc. of the1989 AIAA Guidance, Navigation, and Control Conference,Boston, 1989, 895–910.
  6. [6] M. Steinbach, H.G. Bock, & R.W. Longman, Time-optimalextension or retraction in polar coordinate robots: A numericalanalysis of the switching structure, Journal of OptimizationTheory and Applications, March 1995. doi:10.1007/BF02191987
  7. [7] M. Steinbach, H.G. Bock, & R.W. Longman, Time optimalcontrol of SCARA robots, AIAA Guidance, Navigation andControl Conference, A Collection of Technical Papers, Port-land, Oregon, 1990, 707–716.
  8. [8] M. M¨ossner-Beigel, M. Steinbach, H.G. Bock, & R.W. Long-man, Time optimal path planning in polar robots with jointflexibility, Advances in the Astronautical Sciences, Vol. 97, Pt.2, 1998.
  9. [9] B. Hartel, M. Steinbach, H.G. Bock, & R.W. Longman,The influence of friction on time optimal robot trajectories,Proc. 35th Annual Conf. on Communication, Control andComputing, University of Urbana Champaign, Illinois, 1997,817–826.
  10. [10] G. Giese, R.W. Longman, & H.G. Bock, Understanding howminimum-time control optimizes link interaction forces in polarcoordinate robots, Advances in the Astronautical Sciences, Vol.102, 223–242.
  11. [11] G. Giese, R.W. Longman, & H.G. Bock, The optimized inter-action forces in minimum time control of elbow and SCARArobots, Advances in the Astronautical Sciences, Vol. 103, 1999,653–672.
  12. [12] V. Schulz, H.G. Bock, & R.W. Longman, Computer-aidedmotion planning for satellite mounted robots, MathematicalMethods in the Applied Sciences, Vol. 21, 1998, 733–755. doi:10.1002/(SICI)1099-1476(19980525)21:8<733::AID-MMA973>3.0.CO;2-F
  13. [13] J. Li, R.W. Longman, M. Steinbach, H.G. Bock, Issues in theimplementation of time-optimal path planning, Symposiumon Nonlinear Dynamics, AIAA Aerospace Sciences Meeting,Reno, Nevada, 1997, 517–527.
  14. [14] J. Li, R.W. Longman, V.H. Schulz, & H.G. Bock, The choiceof appropriate cost functionals for optimizing the operatingspeed of robots, Advances in the Astronautical Sciences, Vol.97, Pt. 2, 1998, 1821–1840.
  15. [15] J. Li, R.W. Longman, V.H. Schulz, & H.G. Bock, Imple-menting time optimal robot maneuvers using realistic actuatorconstraints and learning control, Advances in the AstronauticalSciences, Vol. 99, 1998, 355–374.
  16. [16] J. Zhao & R.W. Longman, Predictive feedback control forimplementing optimal point-to-point trajectories followed byregulation, Advances in the Astronautical Sciences, Vol. 119,2005, 1601–1620.
  17. [17] J. Zhao, M. Diehl, R.W. Longman, H.G. Bock, & J. P. Schl¨oder,Nonlinear model predictive control of robots using real-timeoptimization, Proc. of the 2004 AIAA/AAS AstrodynamicsSpecialist Conference, Providence, RI, August 2004.
  18. [18] J. Zhao, R.W. Longman, H.G. Bock, & M. Diehl, Inversedynamics approach for real-time optimal control of robots,Advances in the Astronautical Sciences, Vol. 120, to appear.
  19. [19] H.G. Bock & K.-J. Plitt, A multiple shooting algorithm fordirect solution of optimal control problems, Proc. 9th IFACWorld Congress, Budapest 1984.
  20. [20] R. Bulirsch & J. Stoer, Numerische Mathematik 2 (Heidelberg:Springer-Verlag, 1990).

Important Links:

Go Back