An Artificial Neural Network Approach for Three-Zone Distance Protection

E.A. Feilat and K.N. Al-Tallaq

References

  1. [1] W. Elmore, Protective relaying theory and applications (NY: Marcel Dekker, 1994).
  2. [2] J.L. Blackburn, Protective relaying principles and applications (NY: Marcel Dekker, 1987).
  3. [3] C. Christopoulos & A. Wright, Electrical power system protection (UK: Kluwer Academic Publisher, 2nd edn., 1999).
  4. [4] G. Phadke & J.S. Thorpe, Computer relaying for power systems (NY: Research Studies Press Ltd., 1988).
  5. [5] A.T. Johns & S.K. Salman, Digital protection for power systems (UK: Peter Peregrinus Ltd., 1995).
  6. [6] H. Kudu, H. Sasaki, K. Seo, M. Takahashi, K. Youshida, & T. Meda, Implementation of a digital distance relay using an interpolated integral solution of a differential equation, IEEE Trans. on Power Delivery, 3(4), 1988, 1475–1481. doi:10.1109/61.193946
  7. [7] G. Fazio, V. Lauropoli, F. Muzi, & G. Sacerdoti, Variablewindow algorithm for ultra-high-speed distance protection, IEEE Trans. on Power Delivery, 18(2), 2003, 412–419. doi:10.1109/TPWRD.2002.807159
  8. [8] M. Ramamoorty, Application of digital computers to power system protection, Journal of Inst. Eng. (India), 52(10), 1972, 235–238.
  9. [9] M.S. Sachdev & M.A. Baribeau, A new algorithm for digital impedance relays, IEEE Trans. on Power Apparatus and Systems, 98(6), 1979, 2232–2240. doi:10.1109/TPAS.1979.319422
  10. [10] O.A.S. Youssef, A fundamental digital approach to impedance relays, IEEE Trans. on Power Delivery, 7(4), 1992, 1861–1867. doi:10.1109/61.156988
  11. [11] A.S. AlFuhaid & M.A. El-Sayed, A recursive least-squares digital distance relaying algorithm, IEEE Trans. on Power Delivery, 14(4), 1999, 1257–1262. doi:10.1109/61.796215
  12. [12] W.J. Smolinski, An algorithm for digital impedance calculation using a single pi section transmission line model, IEEE Trans. on Power Apparatus and Systems, 102(10), 1983, 3358–3369. doi:10.1109/TPAS.1983.317832
  13. [13] D.V. Coury & D.C. Jorge, Artificial neural network approach to distance protection of transmission lines, IEEE Trans. on Power Delivery, 13(1), 1988, 102–108. doi:10.1109/61.660861
  14. [14] T. Dalestein & B. Kulicke, Neural network approach to fault classification for high speed protective relaying, IEEE Trans. on Power Delivery, 10(2), 1995, 1002–1009. doi:10.1109/61.400828
  15. [15] T.S. Sidhu, H. Singh, & M.S. Sachdevm, Design, implementation, and testing of an artificial neural network based fault direction discrimination for protecting transmission lines, IEEE Trans. on Power Delivery, 10(2), 1995, 697–706. doi:10.1109/61.400862
  16. [16] R. Venkatesan & B. Balamurugan, A real-time hardware fault detector using an artificial neural network for distance protection, IEEE Trans. on Power Delivery, 16(1), 2001, 75–82. doi:10.1109/61.905596
  17. [17] W-M. Lin, C-D Yang, J-H. Lin, & M-T. Tsay, A fault classification method by RBF neural network with OLS learning procedure, IEEE Trans. on Power Delivery, 16(4), 2001, 473– 477. doi:10.1109/61.956723
  18. [18] P.K. Dash, A.K. Pradhan, & G. Panda, Application of minimal radial basis function neural network to distance protection, IEEE Trans. on Power Delivery, 16(1), 2001, 68–74. doi:10.1109/61.905593
  19. [19] S. Haykin, Neural networks a comprehensive foundation (NY: Macmillan College Publishing Company, 2nd edn., 1999).
  20. [20] M. El-Sharkawi & D. Niebur, Artificial neural networks with applications to power systems (NJ: IEEE Service Center, 1995).
  21. [21] H. Demuth & M. Beale, Neural network toolbox user’s guide for use with MATLAB (MA: The Math Works, Inc., 2002).

Important Links:

Go Back