Nonlinear System Visualization Using Performance Maps

J.J. Alpigini

References

  1. [1] G. Chen (ed.), Controlling chaos and bifurcations in engineering systems (Boca Raton, FL: CRC Press, 2000).
  2. [2] V. Manosa, D. Ikhouane, & J. Rodellar, Control of uncertain non-linear systems via adaptive backstepping, forthcoming in Journal of Sound and Vibration (proof available online March 17, 2004, http://www.sciencedirect.com/science/article/ B6WM3-4BYC0GN-3/2/8ff30d640267c20a34adeeb708032e01.
  3. [3] F.H.I. Pereira-Pinto, A.M. Ferreira, & M.A. Savi, Chaos control in a nonlinear pendulum using a semi-continuous method, Chaos Solutions & Fractals, 22, 2004, 653–668. doi:10.1016/j.chaos.2004.02.047
  4. [4] Z. Ge & C. Lee, Non-linear dynamics and control of chaos for a rotational machine with a hexagonal centrifugal governor with a spring, Journal of Sound and Vibration, 262, 2003, 845–864. doi:10.1016/S0022-460X(03)00092-0
  5. [5] C. Lin, Adaptive CMAC-based supervisory control for uncertain nonlinear systems, IEEE Trans. Systems, Man, And Cybernetics, Part B: Cybernetics, 34 (?), 2004, 1248–1260. doi:10.1109/TSMCB.2003.822281
  6. [6] J.J. Alpigini, The evaluation and visualization of system performance in chaotic dynamical systems, Information Sciences, 127, 2000, 173–192. doi:10.1016/S0020-0255(00)00038-4
  7. [7] J.J. Alpigini & D.W. Russell, System analysis via performance maps, Control Engineering Practice, 11, 2003, 493–504. doi:10.1016/S0967-0661(02)00145-4
  8. [8] G. Julia, Memoire sur l’iteration des fonctions rationnelles, Journal de Mathematiques Pures et Appliquees, 8, 1918, 47–245.
  9. [9] M. Basso, R. Genesio, & A. Tesi, An LMI-based controller synthesis for periodic trajectories in a class of nonlinear systems, IEEE Trans. Automatic Control, 47 (?), 2002, 1740–1744. doi:10.1109/TAC.2002.803550
  10. [10] L. Chen, G. Chen, & Y. Lee, Fuzzy modeling and adaptive control of uncertain chaotic systems, Information Sciences, 121, 1999, 27–37. doi:10.1016/S0020-0255(99)00080-8
  11. [11] M. Efe, C. Unsal, O. Kaynak, & X. Yu, Variable structure control of a class of uncertain systems, Automatica, 40, 2004, 59–64. doi:10.1016/j.automatica.2003.07.010
  12. [12] C.E. Shannon, A mathematical theory of communication, Bell System Technical Journal, 27, 1948, 379-423, 623–656.
  13. [13] D.W. Russell, Using the boxes methodology as a possible stabilizer of Lorenz chaos, Proc. 7th Australian Joint Conf. on Artificial Intelligence (AI’94), Armidale, Australia, 1994, 338–345.
  14. [14] J.J. Alpigini & D.W. Russell, Visualization of control regions for badly behaved real-time systems, IASTED Int. Conf. on Modeling and Simulation, Pittsburgh, PA, USA, 1998, 271–276.
  15. [15] J.J. Alpigini & D.W. Russell, The effective information dimension: A metric for complexity measurement, Proc. IASTED Int. Conf. on Applied Simulation and Modeling, Banff, Canada, 2000, 162–167.
  16. [16] F.C. Moon, Chaotic and fractal dynamics (New York: John Wiley & Sons, 1992).

Important Links:

Go Back