Gasoline Blending System Modelling via Static and Dynamic Neural Networks

W. Yu and A. Morales

References

  1. [1] D.-M. Chang, C.-C. Yu, & I.-L. Chien, Coordinated control ofblending systems, IEEE Trans. Control Systems Technology,6 (4), 1998, 495–506. doi:10.1109/87.701343
  2. [2] A. Singh, J.F. Forbes, P.J. Vermeer, & S.S. Woo, Model-based real-time optimization of automotive gasoline blendingoperations, Journal of Process Control, 10, 2000, 43–58. doi:10.1016/S0959-1524(99)00037-2
  3. [3] Y. Zhang, D. Monder, & J.F. Forbes, Real-time optimization under parametric uncertainty: A probability constrained approach, Journal of Process Control, 12, 2002, 373–389. doi:10.1016/S0959-1524(01)00047-6
  4. [4] W.L. Luyben, Process modeling, simulation and control forchemical enqineers, 2nd ed. (New York: McGraw-Hill, 1990).
  5. [5] J. Alvarez-Ramirez, A. Morales, & R. Suarez, Robustness of aclass of bias update controllers for blending systems, IndustrialEngineering Chemistry Research, 41 (19), 2002, 4786–4793. doi:10.1021/ie0109455
  6. [6] L. Jin & M.M. Gupta, Stable dynamic backpropagation learningin recurrent neural networks, IEEE Trans. Neural Networks,10 (6), 1999, 1321–1334. doi:10.1109/72.809078
  7. [7] J.J. Hopfield, Neurons with grade response have collectivecomputational propierties like those of a two-state neurons,Proc. National Academy of Science, USA, 81, 1984, 3088–3092. doi:10.1073/pnas.81.10.3088
  8. [8] J.A.K. Suykens, J. Vandewalle, & B. De Moor, Lur’e systemswith multilayer perceptron and recurrent neural networks:Absolute stability and dissipativity, IEEE Trans. on AutomaticControl, 44, 1999, 770–774. doi:10.1109/9.754815
  9. [9] W. Yu, A.S. Poznyak, & X. Li, Multilayer dynamic neural networks for nonlinear system on-line identification, InternationalJournal of Control, 74 (18), 2001, 1858–1864. doi:10.1080/00207170110089816
  10. [10] Z. Feng & A.N. Michel, Robustness analysis of a class ofdiscrete-time systems with applications to neural networks,Proc. American Control Conf., San Deigo, CA, 1999, 3479–3483.
  11. [11] J.A.K. Suykens, J. Vandewalle, & B. De Moor, NLq Theory:Checking and imposing stability of recurrent neural networksfor nonlinear modelling, IEEE Trans. on Signal Processing(Special Issue on Neural Networks for Signal Processing),45 (11), 1997, 2682–2691. doi:10.1109/78.650094
  12. [12] M.M. Polycarpou & P.A. Ioannou, Learning and convergenceanalysis of neural-type structured networks, IEEE Trans.Neural Networks, 3 (1), 1992, 39–50. doi:10.1109/72.105416
  13. [13] P.A. Ioannou & J. Sun, Robust adaptive control (Upper SaddleRiver, NJ: Prentice-Hall, 1996).
  14. [14] B. Egardt, Stability of adaptive controllers (Berlin: Springer-Verlag, 1979).
  15. [15] E.B. Kosmatopoulos, M.M. Polycarpou, M.A. Christodoulou,& P.A. Ioannou, High-order neural network structures foridentification of dynamical systems, IEEE Trans. on NeuralNetworks, 6 (2), 1995, 442–431. doi:10.1109/72.363477
  16. [16] S. Jagannathan & F.L. Lewis, Identification of nonlineardynamical systems using multilayered neural networks, Automatica, 32 (12), 1996, 1707–1712. doi:10.1016/S0005-1098(96)80007-0
  17. [17] Q. Song, Robust training algorithm of multilayered neuralnetworks for identification of nonlinear dynamic systems, IEEProceedings, Control Theory and Applications, 145 (1), 1998,41–46. doi:10.1049/ip-cta:19981614
  18. [18] J.H. Gary & G.E. Handwerk, Petroleum refining technologyand economics (New York: Marcel Dekker, 1994).
  19. [19] W.C. Healy, C.W. Maassen, & R.T. Peterson, A new approachto blending octanes, Proc. 24th Meeting of American PetroleumInstitute’s Division of Refining, New York, 1959, 128–133.
  20. [20] A. Muller, New method produces accurate octane blendingvalues, Oil & Gas Journal, 23 (3), 1992, 80–90.
  21. [21] A.H. Zahed, S.A. Mullah, & M.D. Bashir, Predict octanenumber for gasoline blends, Hydrocarbon Processing, 5, 1993,85–87.
  22. [22] K. Murakami & D.E. Seborg, Constrained parameter estimation with applications to blending operations, Journal of Process Control, 10, 2000, 195–202. doi:10.1016/S0959-1524(99)00032-3
  23. [23] K.S. Narendra & K. Parthasarathy, Identification and controlof dynamical systems using neural networks, IEEE Trans.Neural Networks, 1 (1), 1990, 4–27. doi:10.1109/72.80202
  24. [24] Z.P. Jiang & Y. Wang, Input-to-state stability for discrete-time nonlinear systems, Automatica, 37(2), 2001, 857-869. doi:10.1016/S0005-1098(01)00028-0

Important Links:

Go Back