Multiphysics Modelling Environment for Continuum and Discrete Dynamics

A.V. Smirnov

References

  1. [1] S. Littmarck, Math, models, motion, and more, PT Design,May 2000, 29–33.
  2. [2] S. Littmarck, Solving differential equations, The IndustrialPhysicist, February 2001, 21–23.
  3. [3] J. Thilmany, More than one force of nature, MechanicalEngineering, 124 (2), 2002, 49–51.
  4. [4] M. McManus, K. Cross, C. Walshaw, S. Johnson, & P. Leggett,A scalable strategy for the parallelization of multiphysicsunstructured mesh-iterative codes on distributed-memory systems, International Journal of High Performance Computing Applications, 14 (2), 2000, 137–174. doi:10.1177/109434200001400203
  5. [5] S.M. Rifai, Z. Johan, W.-P. Wang, T.J.R. Grisval,J.-P. Hughes, & R.M. Ferencz, Multiphysics simulation offlow-induced vibrations and aeroelasticity on parallel computing platforms, Computational Methods in Applied Mechanical Engineering, 174 (3–4), 1999, 393–417. doi:10.1016/S0045-7825(98)00306-5
  6. [6] M.A. Troscinski, Real-world modeling keeps analysis honest,Machine Design, 68, 1996, 66–68.
  7. [7] J.P. Lemaitre, Multiphysics behaviors, in Handbook of materialsbehavior models, Vol. 3 (San Diego, CA: Elsevier, 2001), xxvii,1200.
  8. [8] M. Peszynska, Multiphysics coupling for two phase flow indegenerate conditions, in Advanced techniques and algorithmsfor reservoir simulation: The IMA volumes in mathematicsand its applications, Vol. 131 (New York: Springer, 2002),21–39.
  9. [9] C. Bailey & S. Bounds, Multiphysics modeling and its application to the casting process, Computer Modeling & Simulation in Engineering, 4, 1999, 206–212.
  10. [10] I. Yotov, A multilevel newton-krylov interface solver for multi -physics couplings of flow in porous media: Solution methodsfor large-scale non-linear problems, Numerical Linear Algebrawith Applications, 8, 2001, 551–570. doi:10.1002/nla.263
  11. [11] C. Bailey, G.A. Taylor, M. Cross, & P. Chow, Discretisationprocedures for multi-physics phenomena: Applied and computational topics in partial differential equations (Gramado, 1997), Journal of Computational and Applied Mathematics, 103 (1), 1999, 3–17. doi:10.1016/S0377-0427(98)00236-2
  12. [12] B. Smith, P. Bjørstad, & W. Groupp, Domain decomposition: Parallel multilevel methods for elliptic partial differentialequations (Cambridge: Cambridge University Press, 1996).
  13. [13] A. Quanteroni & A. Valli, Domain decomposition methodfor partial differential equations (Oxford, New York: OxfordUniversity Press, 1999).
  14. [14] Q.V. Dihn, R. Glowinski, & J. Periaux, Solving elliptic problemsby domain decomposition methods with applications, in Ellipticproblem solvers II (New York: Academic Press, 1984).
  15. [15] J.H. Ferziger & M. Peric, Computational methods for fluiddynamics (Berlin: Springer Verlag, 1997).
  16. [16] P.M. Gresho & R.L. Sani, Incompressible flow and the finiteelement method: Isothermal laminar flow, Vol. 2 (New York:John Wiley & Sons, 2000).
  17. [17] A. Smirnov & I. Celik, A Lagrangian particle dynamics modelwith an implicit four-way coupling scheme, The 2000 ASME Int.Mechanical Engineering Congress and Exposition, Fluids Engineering Division, Vol. FED-253, Orlando, FL, 2000, 93–100.
  18. [18] A.V. Smirnov, Domain coupling with the DOVE scheme, inParallel CFD 2003 (Moscow: Russian Academy of Sciences,2003).
  19. [19] S.V. Patankar, Numerical heat transfer and fluid flow (NewYork: McGraw-Hill, 1980).
  20. [20] K.A. Hoffman & S.T. Chiang, Computational fluid dynamicsfor engineers (Wichita, KA: Engineering Education System,1993).
  21. [21] A.V. Smirnov, W. Huebsh, & C. Menchini, A flowsolverwith flexible boundaries, IASTED Int. Conf. number 380-252,Modelling and Simulation, Palm Springs, CA, 2003, 258–263.
  22. [22] K.A. Hoffman & S.T. Chiang, Computational fluid dynamicsfor engineers, Vol. 1 (Wichita, KA: Engineering EducationSystem, 1993).
  23. [23] A. Smirnov, S. Shi, & I. Celik, Random flow generationtechnique for large eddy simulations and particle-dynamicsmodeling, Trans. ASME Journal of Fluids Engineering, 123,2001, 359–371. doi:10.1115/1.1369598
  24. [24] G. Sridhar & J. Katz, Drag and lift forces on microscopicbubbles entrained by a vortex, Physics of Fluids, 7 (2), 1995,389–399. doi:10.1063/1.868637
  25. [25] S. Elghobashi & J. Lasheras, Effects of gravity on shearedturbulence laden with bubbles or droplets, 3rd MicrogravityFluid Physics Conf., Cleveland, OH, 1996, 443–448.
  26. [26] A.V. Smirnov, Tool assisted mesh generation based on a tissue-growth model, Medical and Biological Engineering and Computing, 41(4), 2003, 494-497 doi:10.1007/BF02348095

Important Links:

Go Back