A. Gholipour, C. Lucas, and D. Shahmirzadi
[1] S. Chen, Y. Wu, & B.L. Luk, Combined genetic algorithmoptimization and regularized orthogonal least squares learningfor radial basis function networks, IEEE Trans. on NeuralNetworks, 10 (5), 1999, 1239–1243. doi:10.1109/72.788663 [2] H. Leung, T. Lo, & S. Wang, Prediction of noisy chaotic timeseries using an optimal radial basis function neural network,IEEE Trans. on Neural Networks, 12 (5), 2001, 1163–1172. doi:10.1109/72.950144 [3] H. Lundstedt, Neural networks and predictions of solar-terrestrial effects, Planet. Space Sci., 40, 1992, 457–464. doi:10.1016/0032-0633(92)90164-J [4] R.S. Sutton, Learning to predict by the method of temporaldifferences, Machine Learning, 3, 1989, 9–44. [5] R.S. Sutton & A.G. Barto, Introduction to reinforcementlearning (Cambridge, MA: MIT Press, 1998). [6] A. Barto, R. Sutton, & C. Watkins, Learning and sequentialdecision making, in M. Gabriel and J.W. Moore (Ed.), Learningand Computational Neuroscience (Cambridge, MA: MIT Press,1990), 539–602. [7] K. Inoue, K. Kawabata, & H. Kobayashi, On a decision makingsystem with emotion, Proc. 5 th IEEE Int. Workshop on Robotand Human Communication, 1996, Tsukuba, Japan, 461–465. [8] J.R. Jang, ANFIS: Adaptive-network-based fuzzy inferencesystem, IEEE Trans. on Systems, Man and Cybernetics, 23 (3),1993, 665–685. doi:10.1109/21.256541 [9] A.J. Izeman, Wolf J.R. and the Zurich sunspot relative numbers,The Mathematical Intelligence, 7 (1), 1985, 27–33. [10] R.J. Thompson, A technique for predicting the amplitude ofsolar cycle, Solar Physics, 148, 1993, 383. doi:10.1007/BF00645097 [11] K.H. Schatten & W.D. Pesnell, An early solar dynamo prediction: Cycle 23 ∼ Cycle 22, Geophysical Research Letters, 20, 1993, 2257–2278. doi:10.1029/93GL02431 [12] C. Watkins, Learning from delayed rewards, doctoral diss.,Cambridge, University, England, 1989. [13] C. Watkins,& P. Dayan, Q-Learning, Machine Learning, 8,1992, 279–292. [14] M. Fatourechi, C. Lucas, & A. Khaki Sedigh, An agent-basedapproach to multivariable control, Proc. IASTED Int. Conf.on Artificial Intelligence and Applications, Marbella, Spain,2001, 376–381. [15] M. Fatourechi, C. Lucas, & A. Khaki Sedigh, Reducing controleffort by means of emotional learning, Proc. 9th Iranian Conf.on Electrical Engineering, ICEE’01 (4-1), Tehran, Iran, 2001,(41), 1–8. [16] L.I. Perlovsky, Emotions, learning and control, Proc. IEEEInt. Symp. on Intelligent Control/Intelligent Systems andSemiotics, Cambridge, MA, 1999, 132–137. [17] R. Ventura, & C. Pinto Ferreira, Emotion based control systems, Proc. IEEE Int. Symp. on Intelligent Control/Intelligent Systems and Semiotics, Cambridge, MA, 1999, 64–66. [18] J. Moren, Emotion and learning: A computational model ofthe amygdala, doctoral diss., Lund University, Lund, Sweden,2002. [19] J. Moren & C. Balkenius, A computational model of emotionallearning in the amygdala, in J.A. Mayer, A. Berthoz, D.Floreano, H.L. Roitblat, & S.W. Wilson (eds.), From animalsto animats 6 (Cambridge, MA: MIT Press, 2000). [20] C. Lucas, D. Shahmirzadi, & N. Sheikholeslami, IntroducingBELBIC: Brain emotional learning based intelligent controller,forthcoming in International Journal of Intelligent Automationand Soft Computing (Autosoft). [21] R.A. Rescorla & A.R. Wagner, A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement, in A.H. Black & W.F. Prokasy (eds.), Classical conditioning II: Current research and theory (New York: Appleton-Century-Crofts, 1972). [22] H. Tong & K. Lim, Threshold autoregressive limit cycles andcyclical data, J. Roy. Statistics. Soc. B, 42, 1980, 245–292. [23] A. Weigend, B. Huberman, & D.E. Rumelhart, Predicting thefuture: A connectionist approach, International Journal ofNeural Systems, 1 (3), 1990, 193–209. doi:10.1142/S0129065790000102 [24] O. Uluyol, M. Ragheb, & S.R. Ray, Local output gammafeedback neural network, Proc. IEEE Int. Conf. on NeuralNetworks: IJCNN, 1, 1998, 337–342. doi:10.1109/IJCNN.1998.682288 [25] F. Boberg, P. Wintoft, & H. Lundstedt, Real time Kp predictions from solar wind data using neural networks, Phys. Chem. Earth, 25 (4), 2000, 275–280. [26] L.F. Bargatze, D.N. Baker, R.L. McPherron, & E.W. Hones,Jr., Magnetospheric impulse response for many levels of geomagnetic activity, Journal of Geophysical Research, 90, 1985, 6387–6394. [27] D. Vassiliadis, A.J. Klimas, D.N. Baker, & D.A. Roberts, Adescription of the solar wind magnetosphere coupling based onnonlinear filters, Journal of Geophysical Research, 100, 1995,3495–3512. doi:10.1029/94JA02725 [28] H. Lundstedt & P. Wintoft, Prediction of geomagnetic stormsfrom solar wind data using a neural network, Ann. Geophysicae,12, 1994, 19–24. doi:10.1007/s00585-994-0019-2 [29] H. Gleisner, H. Lundstedt, & P. Wintoft, Predicting geomagnetic storms from solar wind data using time delay neural networks, Ann. Geophysicae, 14, 1996, 679–686. doi:10.1007/s00585-996-0679-1 [30] H. Gleisner, Solar wind and geomagnetic activity: Predictionsusing neural networks, doctoral diss., Lund University, Lund,Sweden, 2000. [31] D. Goleman, Emotional intelligence (New York: BantamBooks, 1995). [32] C. Lucas, A. Abbaspour, A. Gholipour, B. N. Araabi, & M.Fatourechi, Multi objective emotional learning based fuzzyinference system, WSEAS Transactions on Systems, 4 (2),October 2003, 1094–1101. [33] C. Lucas, A. Abbaspour, A. Gholipour, B. N. Araabi, & M. Fatourechi, Enhancing the performance of neurofuzzy predictorsby emotional learning algorithm, Informatica, 27 (2), 2003,165–174. [34] A. Jazbi & C. Lucas, Intelligent control with emotional learning,7th Iranian Conf. on Electrical Engineering, ICEE’99, Tehran,Iran, 1999, 207–212. [35] R.W. Picard, E. Vyzas, & J. Healey, Toward machine emotionalintelligence: Analysis of affective physiological state, IEEETrans. on Pattern Analysis and Machine Intelligence, 23 (10),2001, 1175–1191. doi:10.1109/34.954607 [36] L.H. Ungar, Reinforcement learning from limited observations,Workshop on Learning and Approximate Dynamic Programming, Playacar, Mexico, 2002. [37] S. Marshall, M. St. John, & D. Tucker, Combining EEG, Pupil dilation techniques and performance metrics to measure cognition and attention in human-computer interaction, DARPA IPTO Bio-Bionics: Augmenting Cognition Workshop, Waikoloa, HI, 2003.
Important Links:
Go Back