Hybrid Fuzzy Neural Network based Contingency Ranking for Voltage Collapse

M. Pandit, L. Srivastava, and J. Sharma

References

  1. [1] S. Greene, I. Dobson, & L.F. Alvarado, Contingency rankingfor voltage collapse via sensitivities from a single nose curve,IEEE Trans. on Power Systems, 14 (1), 1999, 232–240. doi:10.1109/59.744538
  2. [2] E.C. Fuchs, W. Xu, Y. Mansour, H. Hamadanizadeh, & G.K.Morison, Voltage stability contingency screening and ranking,IEEE Trans. on Power Systems, 14 (1), 1999, 256–265. doi:10.1109/59.744541
  3. [3] T. Van Cutsem, C. Moisse, & R. Mailhot, Determination ofsecure operating limits with respect to voltage collapse, IEEETrans. on Power Systems, 14 (1), 1999, 327–334. doi:10.1109/59.744551
  4. [4] L. Srivastava, S.N. Singh, & J. Sharma, Estimation of loadability margin using parallel self-organizing hierarchical neural network, International Journal of Computers and Electrical Engineering (U.S.A.), 26, 2000, 151–167.
  5. [5] M. Pandit, L. Srivastava, & J. Sharma, Contingency ranking forvoltage collapse using parallel self-organizing hierarchical neuralnetwork, forthcoming in International Journal of ElectricalPower and Energy Systems.
  6. [6] Y.-Y. Hsu & H.-C. Kuo, Fuzzy-set based contingency ranking,IEEE Trans. on Power Systems, 7 (3), 1992, 1189–1195. doi:10.1109/59.207333
  7. [7] S.K. Tso, T.X. Zhu, & K.L. Lo, Fuzzy-set approach to dynamic voltage security assessment, IEE Proc. Generation, Transmission and Distribution, 142 (2), 1995, 190–194. doi:10.1049/ip-gtd:19951714
  8. [8] J. Nahman & I. Okljev, Fuzzy logic and probability based real-time contingency ranking, Electrical Power & Energy Systems,22, 2000, 223–229. doi:10.1016/S0142-0615(99)00033-2
  9. [9] M.A. Matos, N.D. Hatziargyriou, & J.A. Pecas Lopes, Multi-contingency steady state security evaluation using fuzzy clustering techniques, IEEE Trans. on Power Systems, 15 (1), 2000, 177–183. doi:10.1109/59.852118
  10. [10] A.A. El-Keib & X. Ma, Application of artificial neural networkin voltage stability assessment, IEEE Trans. on Power Systems,10 (4), 1995, 1890–1896. doi:10.1109/59.476054
  11. [11] L. Srivastava, S.N. Singh, & J. Sharma, A hybrid neuralnetwork model for fast voltage contingency screening andranking, International Journal of Electrical Power and EnergySystems, 22 (q1), 2000, 35–42. doi:10.1016/S0142-0615(99)00024-1
  12. [12] Y. Mansour, E. Vaahedi, & M.A. El Sharkawi, Large-scaledynamic security contingency screening and ranking usingneural network, IEEE Trans. on Power Systems, 12 (2), 1997,954–960. doi:10.1109/59.589789
  13. [13] M.P. Dave & S. Chauhan, A robust artificial neural networktechnique for dynamic security assessment, Electric Machinesand Power Systems, 24 (5), 1996, 733–744.
  14. [14] C.-W. Liu, C.-S. Chang, & M.-C. Su, Neuro-fuzzy networksfor voltage security monitoring based on synchronized phasormeasurements, IEEE Trans. on Power Systems, 13 (2), 1998, 326–332. doi:10.1109/59.667346
  15. [15] K.H. Abdul-Rahman, S.M. Shahidehpour, & M. Daneshdoost,AI approach to optimal VAR control with fuzzy reactive loads,IEEE Trans. on Power Systems, 10 (1), February 1995, 88–97. doi:10.1109/59.373931
  16. [16] K.P. Sankar & M. Sushmita, Multi-layer perceptron, fuzzysets and classification, IEEE Trans. on Neural Networks, 3 (5),1992, 683–697. doi:10.1109/72.159058
  17. [17] A. Rangachari, K.G. Mehrotra, C.K. Mohan, & S. Ranka,An improved algorithm for neural network classification ofimbalanced training sets, IEEE Trans. on Neural Networks,4 (6), 1993, 962–969. doi:10.1109/72.286891
  18. [18] Y.H. Pao, Adaptive pattern recognition and neural networks(Reading, MA: Addison-Wesley, 1989).
  19. [19] K.L. Ho, Y.Y. Hsu, & C.C. Yang, Short-term load forecastingusing a multi-layer neural network with an adaptive learningalgorithm, IEEE Trans. on Power Systems, 7 (1), 1992, 141–149. doi:10.1109/59.141697
  20. [20] O.K. Ersoy & S.W. Deng, Parallel self organizing hierarchicalneural networks with continuous inputs and outputs, IEEETrans. on Neural Networks, NN-6 (5), 1995, 1037–1044. doi:10.1109/72.410348
  21. [21] L. Srivastava, S.N. Singh, & J. Sharma, Parallel self-organizinghierarchical neural network based fast voltage estimation, IEEProc. Generation, Transmission and Distribution, 145 (1),1998, 98–104. doi:10.1049/ip-gtd:19981741
  22. [22] PFLOW: Software available via anonymous ftp at iliniza.uwaterloo.ca in subdirectory pub/pflow.
  23. [23] C.A. Canizares & F.L. Alvarado, Point of collapse and continuation methods for large AC/DC systems, IEEE Trans. Power Systems, 8, 1993, 1–8. doi:10.1109/59.221241
  24. [24] L.L. Freris & A.M. Sasson, Investigation of the load-flowproblem, Proc. IEE, 115 (10), 1968, 1459–1470.
  25. [25] S.N. Singh & S.C. Srivastava, Corrective action planning to achieve a feasibl optimum power flow sloution, IEE Proc. Part C, 142, 1995, 576-582. doi:10.1049/ip-gtd:19952216

Important Links:

Go Back