Fuzzy Gupta Scheduling for Flow Shops with more than Two Machines

T.-P. Hong and T.-N. Chuang

References

  1. [1] E.G. Coffman & P.J. Denning, Operating systems theory (Englewood Cliffs, NJ: Prentice-Hall, 1973).
  2. [2] T.E. Morton & D.W. Pentico, Heuristic scheduling systems with applications to production systems and project management (New York: John Wiley & Sons, 1993).
  3. [3] M. Pinedo, Scheduling theory, algorithms, and systems (Englewood Cliffs, NJ: Prentice-Hall, 1995).
  4. [4] S.M. Johnson, Optimal twoand three-stage production scheduling with setup times included, Naval Research Logistics Quarterly, 1, 1954, 61–68. doi:10.1002/nav.3800010110
  5. [5] J.N.D. Gupta, Heuristic algorithm for multistage flow shop problem, AIIE Trans., 4, 1972, 11–18.
  6. [6] L.A. Zadeh, Fuzzy logic, IEEE Computer, 21 (4), 1988, 83–93. doi:10.1109/2.53
  7. [7] H.J. Zimmermann, Fuzzy sets, decision making, and expert systems (Boston: Kluwer, 1987).
  8. [8] H.J. Zimmermann, Fuzzy set theory and its applications (Boston: Kluwer, 1991).
  9. [9] G. Shafer & R. Logan, Implementing Dempster’s rule for hierarchical evidence, Artificial Intelligence,33 (3), 1987, 271–298. doi:10.1016/0004-3702(87)90040-3
  10. [10] B.G. Buchanan & E.H. Shortliffe, Rule-based expert system: The MYCIN experiments of the Standford Heuristic Programming Projects (Reading, MA: Addison-Wesley, 1984).
  11. [11] S. Chanas & W. Kolodziejczyk, Real-value flows in a network with fuzzy arc capacities, Fuzzy Sets and Systems, 13, 1984, 139–151. doi:10.1016/0165-0114(84)90014-9
  12. [12] S. Chanas & W. Kolodziejczyk, Integer flows in network for fuzzy capacity constrains, Networks, 16, 1986, 17–32. doi:10.1002/net.3230160103
  13. [13] I. Gazdik, Fuzzy-network planning, IEEE Trans. on Reliability, 32 (3), 1983, 304–313.
  14. [14] S. Han, H. Ishii, & S. Fujii, One machine scheduling problem with fuzzy due dates, European Journal of Operational Research, 79, 1994, 1–12. doi:10.1016/0377-2217(94)90391-3
  15. [15] T.P. Hong, C.M. Huang, & K.M. Yu, LPT scheduling for fuzzy tasks, Fuzzy Sets and Systems, 97 (3), 1998, 277–286. doi:10.1016/S0165-0114(96)00357-0
  16. [16] C.M. Klein, Fuzzy shortest paths, Fuzzy Sets and Systems, 28, 1989, 27–41.
  17. [17] S.H. Nasution, Fuzzy critical path method, IEEE Trans. on Systems, Man, and Cybernetics, 24 (1), 1994, 48–57. doi:10.1109/21.259685
  18. [18] C.S. McCahon & E.S. Lee, Project network analysis with fuzzy activity time, Computer and Mathematics with Applications, 15, 1988, 829–838. doi:10.1016/0898-1221(88)90120-4
  19. [19] C.S. McCahon & E.S. Lee, Job sequencing with fuzzy processing times, Computer and Mathematics with Applications, 19, 1990, 31–41. doi:10.1016/0898-1221(90)90191-L
  20. [20] I.S. Chang, Y. Tsujimura, M. Gen, & T. Tozawa, An efficient approach for large scale project planning based on fuzzy Delphi method, Fuzzy Sets and Systems, 76, 1995, 277–288. doi:10.1016/0165-0114(94)00385-4
  21. [21] T.P. Hong & T.N. Chuang, Fuzzy scheduling on two-machine flow shop, Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology, 6, 1998, 471–481.
  22. [22] J.P. Watson, C. Ross, V. Eisele, J. Bins, C. Guerra, L.D. Whitley, & A. Howe, The traveling salesrep problem, edge assembly crossover, and 2-opt, in A.E. Eiben, T. Back, M. Schoenauer, & H.P. Schwefel (eds.), Parallel problem solving from nature, 5 (Amsterdam: Springer-Verlag, 1998).
  23. [23] L.X. Wang, A course in fuzzy systems and control (Upper Saddle River, NJ: Prentice Hall, 1997).

Important Links:

Go Back