EFFICIENT COLLISION AVOIDANCE AND MOTION PLANNING FOR INDUSTRIAL ROBOTS BASED ON NSGA-II AND GJK. 124-138

Ali Joodi Aalhasan, Bao Song, and Yongxing Liu

References

  1. [1] X. Zhu, K. Zhang, and X. Hua, Consistency analysisand suggestions of collision measurement in human–robotcollaboration safety evaluation, International Journal ofRobotics and Automation, 39(10), 2024, 1–13, DOI: http://dx.doi.org/10.2316/J.2024.206-1058.
  2. [2] L. Wang, J. Han, F. Ma, X. Li, and D. Wang, Accuracy designoptimization of a CNC grinding machine towards low-carbonmanufacturing, J Clean Prod, 406, 2023, 137100, DOI: http://dx.doi.org/10.1016/j.jclepro.2023.137100.
  3. [3] A.J.J. Aalhasan, T.X. Qi, and S. Bao, Collision detectionand trajectory planning for palletizing robots based OBB,Indonesian Journal of Electrical Engineering and ComputerScience, 1(1), 2016, 109, DOI: http://dx.doi.org/10.11591/ijeecs.v1.i1.pp109-118.
  4. [4] A.J. Aalhasan and S. Bao, Collision-free algorithm for industrialrobots based GJK and OBB theories, in Developmentsand Applications in Smart Rail, Traffic, and TransportationEngineering, L. Jia, S. Easa, and Y. Qin, Eds. (Changsha:Springer, 2024), 912–922, DOI: http://dx.doi.org/10.1007/978-981-97-3682-9 86.
  5. [5] R. Saravanan, S. Ramabalan, and C. Balamurugan, Evolu-tionary collision-free optimal trajectory planning for intelligentrobots, The International Journal of Advanced ManufacturingTechnology, 36(11–12), 2008, 1234–1251, DOI: 10.1007/s00170-007-0935-x.
  6. [6] J. Zheng, R. Shen, and J. Zou, Enhancing diversity for NSGA-II in evolutionary multi-objective optimization, in Proceeding8th International Conference on Natural Computation,Chongqing, 2012, 654–657, DOI: http://dx.doi.org/10.1109/ICNC.2012.6234585.
  7. [7] G. Chen, C. Wei, Q.X. Jia, H.X. Sun, and B.Y. Yu,Multi-objective trajectory optimization of free-floating spacemanipulator using NSGA-II, Applied Mechanics and Materials,713–715, 2015, 800–804,, DOI: http://dx.doi.org/10.4028/www.scientific.net/AMM.713-715.800.
  8. [8] Y. Huang and M. Fei, ‘Motion Planning of Robot ManipulatorBased on Improved NSGA-II’, Int Journal Control AutomationSystem, 16 (4), 2018, 1878–1886, DOI: http://dx.doi.org/10.1007/s12555-016-0693-3.
  9. [9] D. Wu, G. Hou, W. Qiu, and B. Xie, T-IK: An efficientmulti-objective evolutionary algorithm for analytical inversekinematics of redundant manipulator, IEEE Robot AutomLett, 6(4), 2021, 8474–8481, DOI: http://dx.doi.org/10.1109/LRA.2021.3108550.
  10. [10] W. Zheng and B. Doerr, Better approximation guaranteesfor the NSGA-II by using the current crowding distance, inProceedings of the Genetic and Evolutionary ComputationConference, New York, NY, 2022, 611–619, DOI: http://dx.doi.org/10.1145/3512290.3528847.
  11. [11] X. Zhang, Y. Tian, and Y. Jin, Approximate non-dominatedsorting for evolutionary many-objective optimization, Infor-mation Science, 369, 2016, 14–33, DOI: http://dx.doi.org/10.1016/j.ins.2016.06.007.
  12. [12] M. T. M. Emmerich and A. H. Deutz, A tutorial onmulti-objective optimization: fundamentals and evolutionarymethods, National Computer, 17(3), 2018, 585–609, DOI:http://dx.doi.org/10.1007/s11047-018-9685-y.
  13. [13] Z. Wang, B. Mao, H. Hao, W. Hong, C. Xiao,and A. Zhou, Enhancing diversity by local subsetselection in evolutionary multi-objective optimization, IEEETransactions on Evolutionary Computation, 27(5), 2023,1456–1469, DOI: http://dx.doi.org/10.1109/TEVC.2022.3194211.
  14. [14] S. Verma, M. Pant, and V. Snasel, A comprehensive reviewon NSGA-II for multi-objective combinatorial optimizationproblems, IEEE Access, 9, 2021, 57757–57791, DOI: http://dx.doi.org/10.1109/ACCESS.2021.3070634.
  15. [15] Z. Ren, S. Rathinam, M. Likhachev, and H. Choset, ‘Multi-objective safe-interval path planning with dynamic obstacles’,IEEE Robotic Automation Letter, 7 (3), 2022, 8154–8161, DOI:http://dx.doi.org/10.1109/LRA.2022.3187270.
  16. [16] J. Hao, X. Yang, C. Wang, R. Tu, and T. Zhang, An improvedNSGA-II algorithm based on adaptive weighting and searchingstrategy, Applied Sciences, 12 (22), 2022, 11573, DOI: http://dx.doi.org/10.3390/app122211573.
  17. [17] J. Zhao, Z. Jia, Y. Zhou, R. Zhang, Z. Xie, Z. Xu, Y. Li, andD. Zhang, Path planning based on multi-objective topologicalmap, in Proceeding of the IEEE Congress on EvolutionaryComputation (CEC), 2021, 1719–1726, DOI: http://dx.doi.org/10.1109/CEC45853.2021.9504789.136
  18. [18] K. Deb and H. Jain, An evolutionary many-objectiveoptimization algorithm using reference-point-based nondom-inated sorting approach, Part-I: Solving problems with boxconstraints, IEEE Transactions on Evolutionary Computa-tion, 18(4), 2014, 577–601, DOI: http://dx.doi.org/10.1109/TEVC.2013.2281535.
  19. [19] H. Zhang, G.-G. Wang, J. Dong, and A.H. Gandomi,Improved NSGA-III with second-order difference randomstrategy for dynamic multi-objective optimization,Processes, 9(6), 2021, 911, DOI: http://dx.doi.org/10.3390/pr9060911.
  20. [20] Y. Lahrichi, L. Deroussi, N. Grangeon, and S. Norre, Multi-objective robotic assembly line balancing problem: A NSGA-II approach using multi-objective shortest path decoders, inProceeding of the 17th International Conference on ProjectManagement and Scheduling, 2021, 1–5.
  21. [21] R. Li, Z. Wang, and J. Yan, Multi-objective optimization ofthe process parameters of a grinding robot using LSTM-MLP-NSGAII, Machines, 11 (9), 2023, 882, DOI: http://dx.doi.org/10.3390/machines11090882.
  22. [22] Y. Yan, Z. Lv, J. Yuan, and S. Zhang, Obstacle avoidancefor multi-UAV system with optimized artificial potential fieldalgorithm, International Journal of Robotics and Automation,36 (10), 2021, 1–7, DOI: http://dx.doi.org/10.2316/J.2021.206-0610.
  23. [23] M. Kim, T. Hiroyasu, M. Miki, and S. Watanabe, SPEA2+:Improving the performance of the strength pareto evolutionaryalgorithm 2, in Proceedings of the 8th International Conferenceon Parallel Problem Solving from Nature, Berlin, 2004, 742–751,DOI: http://dx.doi.org/10.1007/978-3-540-30217-975.
  24. [24] W.K.G. Assun¸c˜ao, T.E. Colanzi, S.R. Vergilio, and A.Pozo, A multi-objective optimization approach for theintegration and test order problem, Information Science,267, 2014, 119–139, DOI: http://dx.doi.org/10.1016/j.ins.2013.12.040.
  25. [25] C. Lezcano, J.L. V´azquez Noguera, D.P. Pinto-Roa, M.Garc´ıa-Torres, C. Gaona, and P.E. Gardel-Sotomayor, Amulti-objective approach for designing optimized operationsequence on binary image processing, Heliyon, 6 (4),2020, e03670, DOI: http://dx.doi.org/10.1016/j.heliyon.2020.e03670.
  26. [26] Q. Zhang and H. Li, MOEA/D: A multi-objective evolutionaryalgorithm based on decomposition, IEEE Transactions onEvolutionary Computation, 11(6), 2007, 712–731, DOI: http://dx.doi.org/10.1109/TEVC.2007.892759.
  27. [27] A. Trivedi, D. Srinivasan, K. Sanyal, and A. Ghosh,A survey of multi-objective evolutionary algorithms basedon decomposition, IEEE Transactions on EvolutionaryComputation, 21(3), 2016, 440–462, DOI: http://dx.doi.org/10.1109/TEVC.2016.2608507.
  28. [28] Y. Zhang, G.-G. Wang, K. Li, W.-C. Yeh, M. Jian, and J.Dong, Enhancing MOEA/D with information feedback modelsfor large-scale many-objective optimization, InformationSciences, 522, 2020, 1–16, DOI: http://dx.doi.org/10.1016/j.ins.2020.02.066.
  29. [29] K. Wen, Z. Zhang, J. Zhang, X. Zhang, T. Chen, X. Gao, andW. Zhang, A multi-objective optimization method of a mobilerobot milling system construction for large cabins, AppliedSciences, 13 (4), 2023, 2288, DOI: http://dx.doi.org/10.3390/app13042288.
  30. [30] J. Hou, J. Du, and Z. Chen, ‘Time-optimal trajectoryplanning for the manipulator based on improved non-dominated sorting genetic algorithm II’, Applied Sciences,13(11), 2023, 6757, DOI: http://dx.doi.org/10.3390/app13116757.
  31. [31] K. Deb, Multi-objective optimisation using evolutionaryAlgorithms: An introduction, in Multi-Objective EvolutionaryOptimisation for Product Design and Manufacturing. (London:Springer, 2011), 3–34, DOI: http://dx.doi.org/10.1007/978-0-85729-652-8 1.
  32. [32] E.K. Burke and G. Kendall, Eds., Search Methodologies.(Boston, MA: Springer, 2014), DOI: http://dx.doi.org/10.1007/978-1-4614-6940-7.
  33. [33] M. Montanari, N. Petrinic, and E. Barbieri, Improving theGJK algorithm for faster and more reliable distance queriesbetween convex objects, ACM Transaction Graphics, 36 (3),2017, 1–17, DOI: http://dx.doi.org/10.1145/3083724.
  34. [34] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fastand elitist multi-objective genetic algorithm: NSGA-II, IEEETransactions on Evolutionary Computation, 6 (2), 2002,182–197, DOI: http://dx.doi.org/10.1109/4235.996017.
  35. [35] R.M. Grassmann and J. Burgner-Kahrs, Quaternion-basedsmooth trajectory generator for via poses in SE3 consid-ering kinematic limits in Cartesian space, IEEE Roboticsand Automation Letters, 4(4), 2019, 4192–4199, DOI:http://dx.doi.org/10.1109/LRA.2019.2931133.
  36. [36] Z. Xu, S. Wei, N. Wang, and X. Zhang, Trajectory planningwith bezier curve in cartesian space for industrial gluingrobot, in Proceeding International Conference on IntelligentRobotics and Applications, Cham, 2014, 146–154, DOI: http://dx.doi.org/10.1007/978-3-319-13963-0 15.
  37. [37] R. Talebitooti, M.H. Shojaeefard, and S. Yarmohammadisatri,Shape design optimization of cylindrical tank using b-splinecurves, Computer Fluids, 109, 2015, 100–112, DOI: http://dx.doi.org/10.1016/j.compfluid.2014.12.004.
  38. [38] M. Kaur, V.K. Yanumula, and S. Sondhi, Trajectory planningand inverse kinematics solution of Kuka robot using COA alongwith pick and place application, Intelligent Services Robotic,17 (2), 2024, 289–302, DOI: http://dx.doi.org/10.1007/s11370-023-00501-6.
  39. [39] M. Anschober, R. Edlinger, R. Froschauer, and A. N¨uchter,Inverse kinematics of an Anthropomorphic 6R robot manip-ulator based on a simple geometric approach for embeddedsystems, Robotics, 12(4), 2023,101, DOI: http://dx.doi.org/10.3390/robotics12040101.
  40. [40] CoppeliaSim, Coppelia Robotics: Edu Version 4.0, CoppeliaRobotics, Zurich, 2019.
  41. [41] D. Kijdech and S. Vongbunyong, ‘Using yumi robot andRGB-D camera with YOLOv5 for pick-and-place application,International Journal of Robotics and Automation, 38(10),2023, 1–10, DOI: http://dx.doi.org/10.2316/J.2023.206-0927.

Important Links:

Go Back