CROSS-DOMAIN VISUAL LOOP CLOSURE DETECTION BASED ON IMAGE TRANSLATION MODEL. 64-72

Dan Qiao, Liang Chen, Sheng Jin, and Yueyuan Zhang

References

  1. [1] J. Ni, Y. Chen, K. Wang, and S. X. Yang, An improved visionbased SLAM approach inspired from animal spatial cognition,International Journal of Robotics and Automation, 34(5), 2019,491–502.
  2. [2] L. Shi, F. Zheng, and Y. Shi, Multi-constraint slam optimisationalgorithm for indoor scenes, International Journal of Roboticsand Automation, 38(5), 2023, 375–382.
  3. [3] S. Lowry, N. S¨underhauf, and P. Newman, Visual placerecognition: A survey, IEEE Transactions on Robotics, 32(1),2015, 1–19.
  4. [4] B. Han and L. Xu, MLC-SLAM: Mask loop closing formonocular SLAM, International Journal of Robotics andAutomation, 37(1), 2022, 107–114.
  5. [5] P. C. Ng and S. Henikoff, SIFT: Predicting amino acid changesthat affect protein function, Nucleic Acids Research, 31(13),2003, 3812–3814.
  6. [6] H. Bay, T. Tuytelaars, and L. Van Gool, Surf: Speeded uprobust features, in Proceeding of 9th European Conference onComputer Vision, Graz, 2006, 404–417.
  7. [7] N. Dalal and B. Triggs, Histograms of oriented gradients forhuman detection, in Proceeding of IEEE Computer SocietyConference on Computer Vision and Pattern Recognition, SanDiego, CA, 2005, 886–893.
  8. [8] J. Y. Zhu, T. Park, and P. Isola, Unpaired image-to- usingcycle-consistent adversarial networks, in Proceeding of IEEEInternational Conference on Computer Vision, Venice, 2017,2223–2232.
  9. [9] K. A. Tsintotas, L. Bampis, and A. Gasteratos, The revisitingproblem in simultaneous localization and mapping: A survey onvisual loop closure detection, IEEE Transactions on IntelligentTransportation Systems, 23(11), 2022, 19929–19953.
  10. [10] S. An, G. Che, and F. Zhou, Fast and incremental loop closuredetection using proximity graphs, Proceeding of IEEE/RSJInternational Conference on Intelligent Robots and Systems,Macau, 2019, 378–385.
  11. [11] Y. A. Malkov and D. A. Yashunin, Efficient and robustapproximate nearest neighbor search using hierarchicalnavigable small world graph, IEEE Transactions on PatternAnalysis and Machine Intelligence, 42(4), 2018, 824–836.
  12. [12] S. Jin, X. Dai, and Q. Meng, Loop closure detection with patch-level local features and visual saliency prediction, EngineeringApplications of Artificial Intelligence, 120, 2023, 105902.
  13. [13] R. Arandjelovic, P. Gronat, and A. Torii, NetVLAD: CNNarchitecture for weakly supervised place recognition, inProceeding of IEEE Conference on Computer Vision andPattern Recognition, Las Vegas, NV, 2016, 5297–5307.
  14. [14] J. Ma, K. Zhang, and J. Jiang, Loop closure detection vialocality preserving matching with global consensus, IEEE/CAAJournal of Automatica Sinica, 10(2), 2023, 411–426.
  15. [15] F. Fu, J. Yang, J. Zhang, and J. Ma, MATC-Net: Learningcompact sequence representation for hierarchical loop closuredetection, Engineering Applications of Artificial Intelligence,125, 2023, 106734.
  16. [16] A. Memon, H. Wang, and A. Hussain, Loop closure detectionusing supervised and unsupervised deep neural networks formonocular SLAM systems, Robotics and Autonomous Systems,126, 2020, 103470.
  17. [17] S. Arshad and G-W Kim, SLGD-Loop: A semantic local andglobal descriptor-based loop closure detection for long-termautonomy, IEEE Transactions on Intelligent TransportationSystems, 25(12), 2024, 19714–19728.
  18. [18] I. Goodfellow, J. Pouget-Abadie, and M. Mirza, Generativeadversarial networks, Communications of the ACM, 63(11),2020, 139–144.
  19. [19] J. Johnson, A. Alahi, and L. Fei-Fei, Perceptual losses forreal-time style transfer and super-resolution, in Proceedingof 14th European Conference, Amsterdam, NL, 2016,694–711.
  20. [20] R. Gomez-Ojeda, M. Lopez-Antequera, and N. Petkov, Traininga convolutional neural network for appearance-invariant placerecognition, 2015, arXiv:1505.07428.
  21. [21] Z. Wang, A. C. Bovik, and H. R. Sheikh, Image qualityassessment: from error visibility to structural similarity, IEEETransactions on Image Processing, 13(4), 2004, 600–612.71
  22. [22] Z. Chen, A. Jacobson, and N. S¨underhauf, Deep learningfeatures at scale for visual place recognition, in Proceeding ofIEEE International Conference on Robotics and Automation,Singapore, 2017, 3223–3230.
  23. [23] D. Olid, J. M. F´acil, and J. Civera, Single-view place recognitionunder seasonal changes, 2018, arXiv:1808.06516.
  24. [24] M. J. Milford and G. F. Wyeth, SeqSLAM: Visual route-basednavigation for sunny summer days and stormy winter nights,in Proceeding of IEEE International Conference on Roboticsand Automation, Saint Paul, MN, 2012, 1643–1649.
  25. [25] N. Merrill and G. Huang, Lightweight unsupervised deeploop closure, in Proceeding of Robotics: Science and Systems,Pittsburgh, PA, 2018, 1–10. arXiv:1805.07703.
  26. [26] J.-L. Blanco-Claraco, F.-A. Moreno-Due˜nas, and J. Gonz´alez-Jim´enez, The M´alaga urban dataset: High-rate stereo andLiDAR in a realistic urban scenario, International Journal ofRobotics Research, 33(2), 2014, 207–214.

Important Links:

Go Back